@article{ThomasFiebigKuhnetal.2023, author = {Thomas, Sarah and Fiebig, Juliane E. and Kuhn, Eva-Maria and Mayer, Dominik S. and Filbeck, Sebastian and Schmitz, Werner and Krischke, Markus and Gropp, Roswitha and Mueller, Thomas D.}, title = {Design of glycoengineered IL-4 antagonists employing chemical and biosynthetic glycosylation}, series = {ACS Omega}, volume = {8}, journal = {ACS Omega}, number = {28}, issn = {2470-1343}, doi = {10.1021/acsomega.3c00726}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-350278}, pages = {24841-24852}, year = {2023}, abstract = {Interleukin-4 (IL-4) plays a key role in atopic diseases. It coordinates T-helper cell differentiation to subtype 2, thereby directing defense toward humoral immunity. Together with Interleukin-13, IL-4 further induces immunoglobulin class switch to IgE. Antibodies of this type activate mast cells and basophilic and eosinophilic granulocytes, which release pro-inflammatory mediators accounting for the typical symptoms of atopic diseases. IL-4 and IL-13 are thus major targets for pharmaceutical intervention strategies to treat atopic diseases. Besides neutralizing antibodies against IL-4, IL-13, or its receptors, IL-4 antagonists can present valuable alternatives. Pitrakinra, an Escherichia coli-derived IL-4 antagonist, has been evaluated in clinical trials for asthma treatment in the past; however, deficits such as short serum lifetime and potential immunogenicity among others stopped further development. To overcome such deficits, PEGylation of therapeutically important proteins has been used to increase the lifetime and proteolytic stability. As an alternative, glycoengineering is an emerging strategy used to improve pharmacokinetics of protein therapeutics. In this study, we have established different strategies to attach glycan moieties to defined positions in IL-4. Different chemical attachment strategies employing thiol chemistry were used to attach a glucose molecule at amino acid position 121, thereby converting IL-4 into a highly effective antagonist. To enhance the proteolytic stability of this IL-4 antagonist, additional glycan structures were introduced by glycoengineering utilizing eucaryotic expression. IL-4 antagonists with a combination of chemical and biosynthetic glycoengineering could be useful as therapeutic alternatives to IL-4 neutralizing antibodies already used to treat atopic diseases.}, language = {en} } @article{OtienoKarpatiPetersetal.2023, author = {Otieno, Mark and Karpati, Zsolt and Peters, Marcell K. and Duque, Laura and Schmitt, Thomas and Steffan-Dewenter, Ingolf}, title = {Elevated ozone and carbon dioxide affects the composition of volatile organic compounds emitted by Vicia faba (L.) and visitation by European orchard bee (Osmia cornuta)}, series = {PLoS One}, volume = {18}, journal = {PLoS One}, number = {4}, doi = {10.1371/journal.pone.0283480}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-350020}, year = {2023}, abstract = {Recent studies link increased ozone (O\(_3\)) and carbon dioxide (CO\(_2\)) levels to alteration of plant performance and plant-herbivore interactions, but their interactive effects on plant-pollinator interactions are little understood. Extra floral nectaries (EFNs) are essential organs used by some plants for stimulating defense against herbivory and for the attraction of insect pollinators, e.g., bees. The factors driving the interactions between bees and plants regarding the visitation of bees to EFNs are poorly understood, especially in the face of global change driven by greenhouse gases. Here, we experimentally tested whether elevated levels of O\(_3\) and CO\(_2\) individually and interactively alter the emission of Volatile Organic Compound (VOC) profiles in the field bean plant (Vicia faba, L., Fabaceae), EFN nectar production and EFN visitation by the European orchard bee (Osmia cornuta, Latreille, Megachilidae). Our results showed that O\(_3\) alone had significant negative effects on the blends of VOCs emitted while the treatment with elevated CO\(_2\) alone did not differ from the control. Furthermore, as with O\(_3\) alone, the mixture of O\(_3\) and CO\(_2\) also had a significant difference in the VOCs' profile. O\(_3\) exposure was also linked to reduced nectar volume and had a negative impact on EFN visitation by bees. Increased CO\(_2\) level, on the other hand, had a positive impact on bee visits. Our results add to the knowledge of the interactive effects of O\(_3\) and CO\(_2\) on plant volatiles emitted by Vicia faba and bee responses. As greenhouse gas levels continue to rise globally, it is important to take these findings into consideration to better prepare for changes in plant-insect interactions.}, language = {en} } @article{BencurovaAkashDobsonetal.2023, author = {Bencurova, Elena and Akash, Aman and Dobson, Renwick C.J. and Dandekar, Thomas}, title = {DNA storage-from natural biology to synthetic biology}, series = {Computational and Structural Biotechnology Journal}, volume = {21}, journal = {Computational and Structural Biotechnology Journal}, issn = {2001-0370}, doi = {10.1016/j.csbj.2023.01.045}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-349971}, pages = {1227-1235}, year = {2023}, abstract = {Natural DNA storage allows cellular differentiation, evolution, the growth of our children and controls all our ecosystems. Here, we discuss the fundamental aspects of DNA storage and recent advances in this field, with special emphasis on natural processes and solutions that can be exploited. We point out new ways of efficient DNA and nucleotide storage that are inspired by nature. Within a few years DNA-based information storage may become an attractive and natural complementation to current electronic data storage systems. We discuss rapid and directed access (e.g. DNA elements such as promotors, enhancers), regulatory signals and modulation (e.g. lncRNA) as well as integrated high-density storage and processing modules (e.g. chromosomal territories). There is pragmatic DNA storage for use in biotechnology and human genetics. We examine DNA storage as an approach for synthetic biology (e.g. light-controlled nucleotide processing enzymes). The natural polymers of DNA and RNA offer much for direct storage operations (read-in, read-out, access control). The inbuilt parallelism (many molecules at many places working at the same time) is important for fast processing of information. Using biology concepts from chromosomal storage, nucleic acid processing as well as polymer material sciences such as electronical effects in enzymes, graphene, nanocellulose up to DNA macram{\´e} , DNA wires and DNA-based aptamer field effect transistors will open up new applications gradually replacing classical information storage methods in ever more areas over time (decades).}, language = {en} } @article{SchuhmannScheiner2023, author = {Schuhmann, Antonia and Scheiner, Ricarda}, title = {A combination of the frequent fungicides boscalid and dimoxystrobin with the neonicotinoid acetamiprid in field-realistic concentrations does not affect sucrose responsiveness and learning behavior of honeybees}, series = {Ecotoxicology and Environmental Safety}, volume = {256}, journal = {Ecotoxicology and Environmental Safety}, doi = {10.1016/j.ecoenv.2023.114850}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-350047}, year = {2023}, abstract = {The increasing loss of pollinators over the last decades has become more and more evident. Intensive use of plant protection products is one key factor contributing to this decline. Especially the mixture of different plant protection products can pose an increased risk for pollinators as synergistic effects may occur. In this study we investigated the effect of the fungicide Cantus® Gold (boscalid/dimoxystrobin), the neonicotinoid insecticide Mospilan® (acetamiprid) and their mixture on honeybees. Since both plant protection products are frequently applied sequentially to the same plants (e.g. oilseed rape), their combination is a realistic scenario for honeybees. We investigated the mortality, the sucrose responsiveness and the differential olfactory learning performance of honeybees under controlled conditions in the laboratory to reduce environmental noise. Intact sucrose responsiveness and learning performance are of pivotal importance for the survival of individual honeybees as well as for the functioning of the entire colony. Treatment with two sublethal and field relevant concentrations of each plant protection product did not lead to any significant effects on these behaviors but affected the mortality rate. However, our study cannot exclude possible negative sublethal effects of these substances in higher concentrations. In addition, the honeybee seems to be quite robust when it comes to effects of plant protection products, while wild bees might be more sensitive. Highlights • Mix of SBI fungicides and neonicotinoids can lead to synergistic effects for bees. • Combination of non-SBI fungicide and neonicotinoid in field-realistic doses tested. • Synergistic effect on mortality of honeybees. • No effects on sucrose responsiveness and learning performance of honeybees. • Synergistic effects by other pesticide mixtures or on wild bees cannot be excluded.}, language = {en} } @article{AmatobiOzbekUnalSchaebleretal.2023, author = {Amatobi, Kelechi M. and Ozbek-Unal, Ayten Gizem and Sch{\"a}bler, Stefan and Deppisch, Peter and Helfrich-F{\"o}rster, Charlotte and Mueller, Martin J. and Wegener, Christian and Fekete, Agnes}, title = {The circadian clock is required for rhythmic lipid transport in Drosophila in interaction with diet and photic condition}, series = {Journal of Lipid Research}, volume = {64}, journal = {Journal of Lipid Research}, number = {10}, doi = {10.1016/j.jlr.2023.100417}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-349961}, pages = {100417}, year = {2023}, abstract = {Modern lifestyle is often at odds with endogenously driven rhythmicity, which can lead to circadian disruption and metabolic syndrome. One signature for circadian disruption is a reduced or altered metabolite cycling in the circulating tissue reflecting the current metabolic status. Drosophila is a well-established model in chronobiology, but day-time dependent variations of transport metabolites in the fly circulation are poorly characterized. Here, we sampled fly hemolymph throughout the day and analyzed diacylglycerols (DGs), phosphoethanolamines (PEs) and phosphocholines (PCs) using LC-MS. In wild-type flies kept on sugar-only medium under a light-dark cycle, all transport lipid species showed a synchronized bimodal oscillation pattern with maxima at the beginning and end of the light phase which were impaired in period01 clock mutants. In wild-type flies under constant dark conditions, the oscillation became monophasic with a maximum in the middle of the subjective day. In strong support of clock-driven oscillations, levels of the targeted lipids peaked once in the middle of the light phase under time-restricted feeding independent of the time of food intake. When wild-type flies were reared on full standard medium, the rhythmic alterations of hemolymph lipid levels were greatly attenuated. Our data suggest that the circadian clock aligns daily oscillations of DGs, PEs, and PCs in the hemolymph to the anabolic siesta phase, with a strong influence of light on phase and modality.}, language = {en} } @article{OsmanogluGuptaAlmasietal.2023, author = {Osmanoglu, {\"O}zge and Gupta, Shishir K. and Almasi, Anna and Yagci, Seray and Srivastava, Mugdha and Araujo, Gabriel H. M. and Nagy, Zoltan and Balkenhol, Johannes and Dandekar, Thomas}, title = {Signaling network analysis reveals fostamatinib as a potential drug to control platelet hyperactivation during SARS-CoV-2 infection}, series = {Frontiers in Immunology}, volume = {14}, journal = {Frontiers in Immunology}, doi = {10.3389/fimmu.2023.1285345}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-354158}, year = {2023}, abstract = {Introduction Pro-thrombotic events are one of the prevalent causes of intensive care unit (ICU) admissions among COVID-19 patients, although the signaling events in the stimulated platelets are still unclear. Methods We conducted a comparative analysis of platelet transcriptome data from healthy donors, ICU, and non-ICU COVID-19 patients to elucidate these mechanisms. To surpass previous analyses, we constructed models of involved networks and control cascades by integrating a global human signaling network with transcriptome data. We investigated the control of platelet hyperactivation and the specific proteins involved. Results Our study revealed that control of the platelet network in ICU patients is significantly higher than in non-ICU patients. Non-ICU patients require control over fewer proteins for managing platelet hyperactivity compared to ICU patients. Identification of indispensable proteins highlighted key subnetworks, that are targetable for system control in COVID-19-related platelet hyperactivity. We scrutinized FDA-approved drugs targeting indispensable proteins and identified fostamatinib as a potent candidate for preventing thrombosis in COVID-19 patients. Discussion Our findings shed light on how SARS-CoV-2 efficiently affects host platelets by targeting indispensable and critical proteins involved in the control of platelet activity. We evaluated several drugs for specific control of platelet hyperactivity in ICU patients suffering from platelet hyperactivation. The focus of our approach is repurposing existing drugs for optimal control over the signaling network responsible for platelet hyperactivity in COVID-19 patients. Our study offers specific pharmacological recommendations, with drug prioritization tailored to the distinct network states observed in each patient condition. Interactive networks and detailed results can be accessed at https://fostamatinib.bioinfo-wuerz.eu/.}, language = {en} } @article{MeiserMohammadiVogeletal.2023, author = {Meiser, Elisabeth and Mohammadi, Reza and Vogel, Nicolas and Holcman, David and Fenz, Susanne F.}, title = {Experiments in micro-patterned model membranes support the narrow escape theory}, series = {Communications Physics}, volume = {6}, journal = {Communications Physics}, doi = {10.1038/s42005-023-01443-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-358121}, year = {2023}, abstract = {The narrow escape theory (NET) predicts the escape time distribution of Brownian particles confined to a domain with reflecting borders except for one small window. Applications include molecular activation events in cell biology and biophysics. Specifically, the mean first passage time τ can be analytically calculated from the size of the domain, the escape window, and the diffusion coefficient of the particles. In this study, we systematically tested the NET in a disc by variation of the escape opening. Our model system consisted of micro-patterned lipid bilayers. For the measurement of τ, we imaged diffusing fluorescently-labeled lipids using single-molecule fluorescence microscopy. We overcame the lifetime limitation of fluorescent probes by re-scaling the measured time with the fraction of escaped particles. Experiments were complemented by matching stochastic numerical simulations. To conclude, we confirmed the NET prediction in vitro and in silico for the disc geometry in the limit of small escape openings, and we provide a straightforward solution to determine τ from incomplete experimental traces.}, language = {en} } @article{MunawarZhouPrommersbergeretal.2023, author = {Munawar, Umair and Zhou, Xiang and Prommersberger, Sabrina and Nerreter, Silvia and Vogt, Cornelia and Steinhardt, Maximilian J. and Truger, Marietta and Mersi, Julia and Teufel, Eva and Han, Seungbin and Haertle, Larissa and Banholzer, Nicole and Eiring, Patrick and Danhof, Sophia and Navarro-Aguadero, Miguel Angel and Fernandez-Martin, Adrian and Ortiz-Ruiz, Alejandra and Barrio, Santiago and Gallardo, Miguel and Valeri, Antonio and Castellano, Eva and Raab, Peter and Rudert, Maximilian and Haferlach, Claudia and Sauer, Markus and Hudecek, Michael and Martinez-Lopez, J. and Waldschmidt, Johannes and Einsele, Hermann and Rasche, Leo and Kort{\"u}m, K. Martin}, title = {Impaired FADD/BID signaling mediates cross-resistance to immunotherapy in Multiple Myeloma}, series = {Communications Biology}, volume = {6}, journal = {Communications Biology}, doi = {10.1038/s42003-023-05683-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-357609}, year = {2023}, abstract = {The treatment landscape in multiple myeloma (MM) is shifting from genotoxic drugs to immunotherapies. Monoclonal antibodies, immunoconjugates, T-cell engaging antibodies and CART cells have been incorporated into routine treatment algorithms, resulting in improved response rates. Nevertheless, patients continue to relapse and the underlying mechanisms of resistance remain poorly understood. While Impaired death receptor signaling has been reported to mediate resistance to CART in acute lymphoblastic leukemia, this mechanism yet remains to be elucidated in context of novel immunotherapies for MM. Here, we describe impaired death receptor signaling as a novel mechanism of resistance to T-cell mediated immunotherapies in MM. This resistance seems exclusive to novel immunotherapies while sensitivity to conventional anti-tumor therapies being preserved in vitro. As a proof of concept, we present a confirmatory clinical case indicating that the FADD/BID axis is required for meaningful responses to novel immunotherapies thus we report impaired death receptor signaling as a novel resistance mechanism to T-cell mediated immunotherapy in MM.}, language = {en} } @article{ReuterHaufImdahletal.2023, author = {Reuter, Christian and Hauf, Laura and Imdahl, Fabian and Sen, Rituparno and Vafadarnejad, Ehsan and Fey, Philipp and Finger, Tamara and Jones, Nicola G. and Walles, Heike and Barquist, Lars and Saliba, Antoine-Emmanuel and Groeber-Becker, Florian and Engstler, Markus}, title = {Vector-borne Trypanosoma brucei parasites develop in artificial human skin and persist as skin tissue forms}, series = {Nature Communications}, volume = {14}, journal = {Nature Communications}, doi = {10.1038/s41467-023-43437-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-358142}, year = {2023}, abstract = {Transmission of Trypanosoma brucei by tsetse flies involves the deposition of the cell cycle-arrested metacyclic life cycle stage into mammalian skin at the site of the fly's bite. We introduce an advanced human skin equivalent and use tsetse flies to naturally infect the skin with trypanosomes. We detail the chronological order of the parasites' development in the skin by single-cell RNA sequencing and find a rapid activation of metacyclic trypanosomes and differentiation to proliferative parasites. Here we show that after the establishment of a proliferative population, the parasites enter a reversible quiescent state characterized by slow replication and a strongly reduced metabolism. We term these quiescent trypanosomes skin tissue forms, a parasite population that may play an important role in maintaining the infection over long time periods and in asymptomatic infected individuals.}, language = {en} } @article{AndreskaLueningschroerWolfetal.2023, author = {Andreska, Thomas and L{\"u}ningschr{\"o}r, Patrick and Wolf, Daniel and McFleder, Rhonda L. and Ayon-Olivas, Maurilyn and Rattka, Marta and Drechsler, Christine and Perschin, Veronika and Blum, Robert and Aufmkolk, Sarah and Granado, Noelia and Moratalla, Rosario and Sauer, Markus and Monoranu, Camelia and Volkmann, Jens and Ip, Chi Wang and Stigloher, Christian and Sendtner, Michael}, title = {DRD1 signaling modulates TrkB turnover and BDNF sensitivity in direct pathway striatal medium spiny neurons}, series = {Cell Reports}, volume = {42}, journal = {Cell Reports}, number = {6}, doi = {10.1016/j.celrep.2023.112575}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-349932}, year = {2023}, abstract = {Highlights • Dopamine receptor-1 activation induces TrkB cell-surface expression in striatal neurons • Dopaminergic deficits cause TrkB accumulation and clustering in the ER • TrkB clusters colocalize with cargo receptor SORCS-2 in direct pathway striatal neurons • Intracellular TrkB clusters fail to fuse with lysosomes after dopamine depletion Summary Disturbed motor control is a hallmark of Parkinson's disease (PD). Cortico-striatal synapses play a central role in motor learning and adaption, and brain-derived neurotrophic factor (BDNF) from cortico-striatal afferents modulates their plasticity via TrkB in striatal medium spiny projection neurons (SPNs). We studied the role of dopamine in modulating the sensitivity of direct pathway SPNs (dSPNs) to BDNF in cultures of fluorescence-activated cell sorting (FACS)-enriched D1-expressing SPNs and 6-hydroxydopamine (6-OHDA)-treated rats. DRD1 activation causes enhanced TrkB translocation to the cell surface and increased sensitivity for BDNF. In contrast, dopamine depletion in cultured dSPN neurons, 6-OHDA-treated rats, and postmortem brain of patients with PD reduces BDNF responsiveness and causes formation of intracellular TrkB clusters. These clusters associate with sortilin related VPS10 domain containing receptor 2 (SORCS-2) in multivesicular-like structures, which apparently protects them from lysosomal degradation. Thus, impaired TrkB processing might contribute to disturbed motor function in PD.}, language = {en} }