@article{ScheerZentgraf1978, author = {Scheer, Ulrich and Zentgraf, Hanswalter}, title = {Nucleosomal and supranucleosomal organization of transcriptionally inactive rDNA circles in Dytiscus oocytes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-33188}, year = {1978}, abstract = {Oocytes of the water beetle, Dytiscus marginalis, contain large amounts of rDNA most of which is present in the form of rings containing one or several pre-rRNA genes. Electron microscopy of spread preparations of vitellogenic oocytes has shown that the rDNA is extended in chromatin rings with transcribed pre- rRNA genes and is not packed into nucleosomes (Trendelenburg eta!. , 1976). When similar preparations are made from previtellogenic ooytes in which a large proportion of the nuc1eolar chromatin is transcriptionally inactive, a different morphological form of this chromatin is recognized. In contrast to the transcribed chromatin rings the inactive nucleolar chromatin circles show the characteristic beaded configuration, indicative of nucleosomal packing. Nuc1eosomal packing is also indicated by the comparison of the lengths of these chromatin rings with both iso lated rDNA circ1es and transcribed chromatin rings. In addition, these inactive nuc1eofilaments often appear to be compacted into globular higher order structures of diameters from 21 to 34nm, each composed of an aggregate of 6-9 nuc1eosomes. While the estimated reduction of the overall length of rDNA, as seen in our preparations, is, on the average, only 2.2 - 2.4 fold in the nuc1eosomal state it is 10- 13 fold when supranuc1eosomal globules are present. These data show that the extrachromosomal rDNA of these oocytes goes through a cycle of condensation and extensio n, as a function of the specific transcriptional activity, and that the beaded state described here is exc1usively found in the non-transcribed state.}, language = {en} } @article{WeissSebald1978, author = {Weiss, H. and Sebald, Walter}, title = {Purification of cytochrome oxidase from Neurospora crassa and other sources}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-82082}, year = {1978}, abstract = {A chromatographic procedure 1 is described by means of which cytochrome oxidase has been purified from a variety of organisms including the fungus N eurospora crassa,2,3 the unicellular alga Po/ytoma mirum, 4 the insect Locusta migratoria ,5 the frog Xenopus muel/eri,4 and the mammal Rattus norwegicus. 4 This procedure can be used to equal effect for large-scale preparations, starting from grams of mitochondrial protein, or for small-scale preparations starting from milligrams. The cytochrome oxidase preparations from the different organisms are enzymically active. They show similar subunit compositions.}, subject = {Biochemie}, language = {en} } @inproceedings{FrankeScheerTrendelenburgetal.1978, author = {Franke, Werner W. and Scheer, Ulrich and Trendelenburg, Michael F. and Zentgraf, H. and Spring, H.}, title = {Morphology of transcriptionally active chromatin}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-41097}, year = {1978}, abstract = {Some decades ago it was noted by cytologists that within the interphase nucleus large portions of the transcriptionally ("genetically," in their terms) inactive chromosomal material are contained in aggregates of condensed chromatin, the "chromocenters," whereas transcriptionally active regions of chromosomes appear in a more dispersed form and are less intensely stained with DNA-directed staining procedures (Heitz 1929, 1932, 1956; Bauer 1933). The hypothesis that condensed chromatin is usually characterized by very low or no transcriptional activity, and that transcription occurs in loosely packed forms of chromatin (including, in most cells, the nucleolar chromatin) has received support from studies of ultrathin sections in the electron microscope and from the numerous attempts to separate transcriptionally active from inactive chromatin biochemically (for references, see Anderson et al. 1975; Berkowitz and Doty 1975; Krieg and Wells 1976; Rickwood and Birnie 1976; Gottesfeld 1977). Electron microscopic autoradiography has revealed that sites of RNA synthesis are enriched in dispersed chromatin regions located at the margins of condensed chromatin (Fakan and Bernhard 1971, 1973; Bouteille et al. 1974; Bachellerie et al. 1975) and are characterized by the occurrence of distinct granular and fibrillar ribonucleoprotein (RNP) structures, such as perichromatin granules and fibrils. The discovery that, in most eukaryotic nuclei, major parts of the chromatin are organized in the form of nucleosomes (Olins and Olins 1974; Kornberg 1974; Baldwin et al. 1975) has raised the question whether the same nucleosomal packing of DNA is also present in transcriptionally active chromatin strands. Recent detailed examination of the morphology of active and inactive chromatin involving a diversity of electron microscopic methods, particularly the spreading technique by Miller and coworkers (Miller and Beatty 1969; Miller and Bakken 1972), has indicated that the DNA of some actively transcribed regions is not packed into nucleosomal particles but is present in a rather extended form within a relatively thin (4-7 nm) chromatin fiber.}, language = {en} } @article{SebaldWachterTzagoloff1979, author = {Sebald, Walter and Wachter, E. and Tzagoloff, A.}, title = {Identification of amino acid substitutions in the dicyclohexylcarbodiimide-binding subunit of the mitochondrial ATPase complex from oligomycin-resistant mutants of Saccharomyces cerevisiae}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-62770}, year = {1979}, abstract = {No abstract available}, subject = {Biochemie}, language = {en} } @article{MichelWachterSebald1979, author = {Michel, R. and Wachter, E. and Sebald, Walter}, title = {Synthesis of a larger precursor for the proteolipid subunit of the mitochondrial ATPase complex of Neurospora crassa in a cell-free wheat germ system}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-62789}, year = {1979}, abstract = {No abstract available}, subject = {Biochemie}, language = {en} } @article{SebaldGrafLukins1979, author = {Sebald, Walter and Graf, T. and Lukins, H. B.}, title = {The dicyclohexylcarbodiimide-binding protein of the mitochondrial ATPase complex from Neurospora crassa and Saccharomyces cerevisiae. Identification and isolation}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-62792}, year = {1979}, abstract = {Incubation of mitochondria from Neuraspara crassa and Saccharomyces cerevisiae with the radioactive ATPase inhibitor [14C]dicyclohexylcarbodiimide results in the irreversible and rather specific labelling of a low-molecular-weight polypeptide. This dicyclohexylcarbodiimide-binding protein is identical with the smallest subunit (Mr 8000) of the mitochondrial ATPase complex, and it occurs as oligomer, probably as hexamer, in the enzyme protein. The dicyclohexylcarbodiimide-binding protein is extracted from whole mitochondria with neutral chloroformjmethanol both in the free and in the inhibitor-modified form. In Neuraspara and yeast, this extraction is highly selective and the protein is obtained in homogeneaus form when the mitochondria have been prewashed with certain organic solvents. The bound dicyclohexylcarbodiimide Iabel is enriched in the purified protein up to 50-fold compared to whole mitochondria. Based on the amino acid analysis, the dicyclohexylcarbodiimide-binding protein from Neurospora and yeast consists of at least 81 and 76 residues, respectively. The content of hydrophobic residues is extremely high. Histidine and tryptophan are absent. The N-terminal ~mino acid is tyrosine in Neuraspara and formylmethionine in yeast.}, subject = {Biochemie}, language = {en} } @article{Linsenmair1979, author = {Linsenmair, Karl Eduard}, title = {Untersuchungen zur Soziobiologie der W{\"u}stenassel Hemilepistus reaumuri und verwandter Isopodenarten (Isopoda, Oniscoidea): Paarbildung und Evolution der Monogamie}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-30854}, year = {1979}, abstract = {The desert isopod, Hemilepistus reaumuri, extremely common in the arid regions of North Africa and Asia Minor, depends upon the burrows it itself digs for survival during the hotter parts of the year. The dig-ging of new burrows is limited by chmatic conditions to a short period during the spring. Burrows must be constantly defendet - especially against roving eonspecifics. The decisive problem of a connnuous burrow defense is solved through cooperative behavior: the adult woodlice form monogamous pairs whose partners recognize one another individually. Here, questions on the binding of partners, especially the problem of the binding of male to female will be treated upon, along with questions on the evolution of monogamy, wherein the purely maternal families of Porcellio species will be taken as models for intermedi{\"a}re stages. At first, males olHemilepistus are not permitted to copulate at all; later, for a relatively long period, they are only permitted incomplete copulations, the females alone have control over the partunal ecdysis; they alone determine the moment of final copulations. Under the thermal conditions prevalent during the season of pair formation, a female irreversibly induces a parturial ecdysis only when it has spent a minimum of sev-eral days in her own burrow with a specific male. At higher average temperatures, the number of females which undergo parturial ecdyses without these preconditions increases sharply. Males cannot greatly lnrlu-ence the willingness of females to reproduce with the investment they make in the digging of burrows; the factors deciding this are the male's presence and its role as guard. The first condition necessary for the genesis of monogamy might have been the evolution of a stnc{\"u}y lo-cation-dependent copulatory behavior, which guaranteed the male exclusive mating pnveliges with the female whose location - the burrow - he acheived control of. A male must, under these conditions, serve guard duty in his own interest, and defend the burrow against competitors (Cf or 2) seeking an already-dug burrow. The decisive advantage for the female in the beginning of the development was probably that she could leave the burrow for extended feeding excursions, whereas alone it would have to either completely forego nourishment or, as is the case with the Porcellio species mentioned, must greatly restrict the spectrum of food that it can use (to that which is to be found only a short distance from the burrow and which can eas-ily be carried inside the burrow). This could be a disadvantage, especially during egg production. Necessary to the male's successful defense of the burrow is that he recognises his female. Studies of the Canary Island Porcellio species have shown over which pathways and under what selection pressures the recopinon of individuals, as is realized mHemilepistus, could have evolved. Females can bind males longer, the longer the period of their attraction is extended: Females olHemilepistus reaumuri have been proven to be al·ready att-ractive before they are ready to copulate and still remain attractive after they have copulated. The conse-quences of the last fact will be discussed. The question of why the males remain with the females after the parturial ecdysis will also be discussed: The great danger to the male's investment resulting from a tooi early abandoning, and the low probability of successfully finding another partner after a later abandomng should prevent a positive balance in the males' cost-effecriveness calculations.}, language = {de} } @incollection{FrankeScheerSpringetal.1979, author = {Franke, Werner W. and Scheer, Ulrich and Spring, Herbert and Trendelenburg, Michael F. and Zentgraf, Hanswalter}, title = {Organization of nucleolar chromatin}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-39410}, publisher = {Universit{\"a}t W{\"u}rzburg}, year = {1979}, abstract = {No abstract available}, language = {en} } @incollection{ScheerSpringTrendelenburg1979, author = {Scheer, Ulrich and Spring, Herbert and Trendelenburg, Michael F.}, title = {Organization of transcriptionally active chromatin in lampbrush chromosome loops}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-39293}, publisher = {Universit{\"a}t W{\"u}rzburg}, year = {1979}, abstract = {No abstract available}, language = {en} } @article{ZentgrafTrendelenburgSpringetal.1979, author = {Zentgraf, Hanswalter and Trendelenburg, Michael F. and Spring, Herbert and Scheer, Ulrich and Franke, Werner W. and M{\"u}ller, Ulrike and Drury, Kenneth C. and Rungger, Duri}, title = {Mitochondrial DNA arranged into chromatin-like structures after injection into amphibian oocyte nuclei}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-33174}, year = {1979}, abstract = {Purified mitochondrial DNA (mitDNA) from ovaries ofXenopus lae vis was injected into the nuclei (germinal vesicles) of large viteUogenic oocytes of the same organism and examined by electron microscopy ofthe spread nuclear contents. Normally located nuclei of untreated oocytes as weil as peripherally translocated nuclei of centrifuged oocytes were used. In addition, oocyte nuclei isolated and incubated under liquid paraffin oil were injected with DNA. The integrity oftranscriptional structures of endogenous chromosomal (Iampbrush chromosomes) and extrachromosomal (nucleoli) genes of the injected nuclei was demonstrated. Microinjected mitDN A was identified as circles of chromatin exhibiting polynucleosome-like organization and a me an contour length of 2.6 J.Lm, corresponding to a compaction ratio of the mitDN A of about 2 : I. This DNA packing ratio is similar to that observed after preparation of various kinds of native chromatin in low salt buffers. The chromatin circles formed from injected mitDNA only very rarely exhibited lateral fibrils suggestive of transcriptional activity. These results suggest that purified mitDNA can be transformed to normally structured chromatin when exposed to oocyte nuclear contents but is rarely , if at all , transcribed in this form and in this environment.}, language = {en} } @article{ScheerSommervilleBustin1979, author = {Scheer, Ulrich and Sommerville, John and Bustin, M.}, title = {Injected histone antibodies interfere with transcription of lampbrush chromosome loops in oocytes of Pleurodeles}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-33166}, year = {1979}, abstract = {Antibodies to calf thymus histone H2B were purified by chromatography on DEAE-cellulose and injected into oocyte nuclei of Pleurodeles waltlii. As shown by indirect immunofluorescence these antibodies cross-reacted strongly with corresponding histones associated with lampbrush chromosomes. Shortly after injection the lateral loops of the chromosomes retracted into the chromomeres and by 3 h postinjection the 'lampbrush' appearance was completely lost and the chromosomes appeared in light-microscopic preparations as rod-like structures consisting of 10ngitudina11y coalesced chromomeres. In control oocytes injected with non-immune immunoglobulins or antibodies against a ubiquitous transcript-associated protein no morphological alterations of the lampbrush chromosomes could be observed. Electron microscopic spreads of chromosomes prepared at various times after injection of anti-H2B revealed a progressive loss of transcriptional complexes from the loop axes. Finally, higher-order chromatin configurations, like supranuc1eosomal globules (' superbeads ') or cable-like chromatin strands 50- 60 nm thick predominated, indicating complete transcriptional inactivation of a11 chromosomal regions. The results indicate that H2B antibodies react specifically with his tones associated with the transcribed DNA of lateral loops in their native state. The resulting antigenantibody complexes seem to inhibit progression of the R A polymerases along the template, thus causing the premature release of transcripts, a process analogous to the stripping effect of actinomycin D. The demonstration of histones associated with heavily transcribed regions, which are not compacted into nucleosomes but largely extended, supports the current concept that unfolding of nucleosomes to a110w transcription of the DNA does not involve dissociation of histones. In contrast, amplified ribosomal RNA genes are unaffected by injected HzB antibodies. This does not necessarily indicate absence of his tones from nucleolar chromatin, since we do not know whether it is accessible in vivo to antibodies or whether the histone antigenie determinants are masked by the presence of other proteins. The technique of injecting specific antibodies should be widely applicable when analysing the in vivo distribution of chromosomal components at the electron-microscopic level and when studying complex metabolie processes, like the cleavage and modification of RNA, by selective inhibition of defined enzymic steps.}, language = {en} } @article{MeyerSchartl1979, author = {Meyer, Manfred K. and Schartl, Manfred}, title = {Eine neue Xiphophorus-Art aus Vera Cruz, Mexiko : (Pisces: Poeciliidae)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-87124}, year = {1979}, abstract = {Xiphophorus andersi n. sp. from the Rio Atoyac, Vera Cruz, Mexico is described: lang head, moderately slender body, large dark black spar at the basis of the anal fin; adult male with short sword-like caudal appendage; rip of ray 5a of gonopodium without a developed claw. Xiphophorus andersi n. sp. differs by the combination of distinct characters from all the other species of the genus known so far. The new species shows features of both the so-called platyfish species group and the so-called swordtail species group.}, subject = {Schwertk{\"a}rpfling}, language = {en} } @article{TzagoloffMacinoSebald1979, author = {Tzagoloff, A. and Macino, G. and Sebald, Walter}, title = {Mitochondrial genes and translation products}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-47408}, year = {1979}, abstract = {No abstract available}, subject = {Biochemie}, language = {en} } @article{SebaldWernerWeiss1979, author = {Sebald, Walter and Werner, S and Weiss, H}, title = {Biogenesis of mitochondrial membrane proteins in Neurospora crassa}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-82055}, year = {1979}, abstract = {no abstract available}, subject = {Biochemie}, language = {en} } @article{SebaldWild1979, author = {Sebald, Walter and Wild, G.}, title = {Mitochondrial ATPase complex from Neurospora crassa}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-82065}, year = {1979}, abstract = {The A TPase eomplex has been isolated from mitoehondria of N eurospora crassa by immunologieal teehniques. The protein ean be obtained rapidly and qua ntitatively in high purity by miero- or large-seale immunopreeipitation. Immunopreeipitation has been applied to labeled and doubly labeled mitoehondrial proteins in order to investigate the number and moleeular weights of subunit polypeptides , the site of synthesis of subunit polypeptides, and the dieycIohexyIcarbodiimide-binding protein . The A TPase complex obtained by large-seale immunopreeipitation has been used as starting ma terial for the isolation of hydrophobie polypeptides.}, subject = {Biochemie}, language = {en} } @article{SebaldNeupertWeiss1979, author = {Sebald, Walter and Neupert, W. and Weiss, H.}, title = {Preparation of Neurospora crassa mitochondria}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-82070}, year = {1979}, abstract = {The fungus Neurospora crassa represents a eukaryotic cell with high biosynthetic activities. Cell mass doubles in 2-4 hr during expone ntial growth , even in simple salt media with sucrose as the sole carbon source. The microorgani sm forms a mycelium of long hyphae durlng vegetative growth . The mitochondria can be isolated under relatively gentle condi tions since a few breaks in the threadlike hyphae are sufficient to cause the outflow of the organelles. This article describes two methods for the physical disruption of the hyphae : (I) The cell s are opened in a grind mill between two rotating corundum di sks. This is a continuous and fast procedure and allows large- and small-scale preparations of mitochondria. (2) Hyphae are ground with sand in a mortar and pestle. This procedure can be applied to microscale preparations of mitochondria starting with minute amounts of cells. Other procedures for the isolation of Neurospora mitochondria after the physical di sruption or the enzymatic degradation of the cell wall have been described elsewhere}, subject = {Biochemie}, language = {en} } @incollection{AndersSchollSchartl1979, author = {Anders, F. and Scholl, E. and Schartl, Manfred}, title = {Xiphophorus als Modell in der Krebsforschung}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-72752}, publisher = {Universit{\"a}t W{\"u}rzburg}, year = {1979}, abstract = {No abstract available.}, subject = {Schwertk{\"a}rpfling}, language = {de} } @article{HoppeSebald1980, author = {Hoppe, J. and Sebald, Walter}, title = {Amino acid sequence of the proteolipid subunit of the proton-translocating ATPase complex from the thermophilic bacterium PS-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-62754}, year = {1980}, abstract = {No abstract available}, subject = {Biochemie}, language = {en} } @article{HoppeSchairerSebald1980, author = {Hoppe, J. and Schairer, H. U. and Sebald, Walter}, title = {The proteolipid of a mutant ATPase from Escherichia coli defective in H\(^+\)-conduction contains a glycine instead of the carbodiimide-reactive aspartyl residue}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-62769}, year = {1980}, abstract = {No abstract available}, subject = {Biochemie}, language = {en} } @article{HoppeSchairerSebald1980, author = {Hoppe, J. and Schairer, HU and Sebald, Walter}, title = {Identification of amino-acid substitutions in the proteolipid subunit of the ATP synthase from dicyclohexylcarbodiimide-resistant mutants of Escherichia coli}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-47374}, year = {1980}, abstract = {The amino acid sequence of the proteolipid subunit of the A TP synthase was analyzed in six mutant strains from Escherichia coli K 12, selected for their increased resistance towards the inhibitor N,N'-dicyclohexylcarbodiimide. All six inhibitor-resistant mutants were found to be altered at the same position of the proteolipid, namely at the isoleucine at residue 28. Two substitutions could be identified. In type I this residue was substituted by a valine resulting in a moderate decrease in sensitivity to dicyclohexylcarbodiimide. Type II contained a threonine residue at this position. Here a strong resistance was observed. These two amino acid substitutions did not influence functional properties of the ATPase complex. ATPase as well as A TP-dependent proton-translocating activities of mutant membranes were indistinguishable from the wild type. At elevated concentrations, dicyclohexylcarbodiimide still bound specifically to the aspartic acid at residue 61 of the mutant proteolipid as in the wild type, and thereby inhibited the activity of the ATPase complex. It is suggested that the residue 28 substituted in the resistant mutants interacts with dicyclohexylcarbodiimide during the reactions leading to the covalent attachment of the inhibitor to the aspartic acid at residue 61. This could indicate that these two residues are in close vicinity and would thus provide a first hint on the functional conformation of the proteolipid. Its polypeptide chain would have to fold back to bring together these two residues separated by a segment of 32 residues.}, subject = {Biochemie}, language = {en} }