@article{AbdaKrysciakKrohnMoltetal.2015, author = {Abda, Ebrahim M. and Krysciak, Dagmar and Krohn-Molt, Ines and Mamat, Uwe and Schmeisser, Christel and F{\"o}rstner, Konrad U. and Schaible, Ulrich E. and Kohi, Thomas A. and Nieman, Stefan and Streit, Wolfgang R.}, title = {Phenotypic Heterogeneity Affects Stenotrophomonas maltophilia K279a Colony Morphotypes and \(\beta\)-Lactamase Expression}, series = {Frontiers in Microbiology}, volume = {6}, journal = {Frontiers in Microbiology}, number = {1373}, doi = {10.3389/fmicb.2015.01373}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-136446}, year = {2015}, abstract = {Phenotypic heterogeneity at the cellular level in response to various stresses, e.g., antibiotic treatment has been reported for a number of bacteria. In a clonal population, cell-to-cell variation may result in phenotypic heterogeneity that is a mechanism to survive changing environments including antibiotic therapy. Stenotrophomonas rnaltophilia has been frequently isolated from cystic fibrosis patients, can cause numerous infections in other organs and tissues, and is difficult to treat due to antibiotic resistances. S. maltophilia K279a produces the Li and L2 beta-lactamases in response to beta-lactam treatment. Here we report that the patient isolate S. rnaltophilia K279a diverges into cellular subpopulations with distinct but reversible morphotypes of small and big colonies when challenged with ampicillin. This observation is consistent with the formation of elongated chains of bacteria during exponential growth phase and the occurrence of mainly rod-shaped cells in liquid media. RNA-seq analysis of small versus big colonies revealed differential regulation of at least seven genes among the colony morphotypes. Among those, bleu and bla(L2) were transcriptionally the most strongly upregulated genes. Promoter fusions of b/a(L1) and b/a(L2) genes indicated that expression of both genes is also subject to high levels of phenotypic heterogeneous expression on a single cell level. Additionally, the comE homolog was found to be differentially expressed in homogenously versus heterogeneously bla(L2) expressing cells as identified by RNA(seq) analysis. Overexpression of cornE in S. maltophilia K279a reduced the level of cells that were in a bla(L2)-ON mode to 1\% or lower. Taken together, our data provide strong evidence that S. maltophilia K279a populations develop phenotypic heterogeneity in an ampicillin challenged model. This cellular variability is triggered by regulation networks including b/a(L1), b/a(L2), and comE.}, language = {en} } @article{vonBohlKuehnSimonetal.2015, author = {von Bohl, Andreas and Kuehn, Andrea and Simon, Nina and Nkwouano Ngongang, Vanesa and Spehr, Marc and Baumeister, Stefan and Przyborski, Jude M. and Fischer, Rainer and Pradel, Gabriele}, title = {A WD40-repeat protein unique to malaria parasites associates with adhesion protein complexes and is crucial for blood stage progeny}, series = {Malaria Journal}, volume = {14}, journal = {Malaria Journal}, number = {435}, doi = {10.1186/s12936-015-0967-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-139728}, year = {2015}, abstract = {Background During development in human erythrocytes, Plasmodium falciparum parasites display a remarkable number of adhesive proteins on their plasma membrane. In the invasive merozoites, these include members of the PfMSP1 and PfAMA1/RON complexes, which facilitate contact between merozoites and red blood cells. In gametocytes, sexual precursor cells mediating parasite transmission to the mosquito vector, plasma membrane-associated proteins primarily belong to the PfCCp and 6-cys families with roles in fertilization. This study describes a newly identified WD40-repeat protein unique to Plasmodium species that associates with adhesion protein complexes of both merozoites and gametocytes. Methods The WD40-repeat protein-like protein PfWLP1 was identified via co-immunoprecipitation assays followed by mass spectrometry and characterized using biochemical and immunohistochemistry methods. Reverse genetics were employed for functional analysis. Results PfWLP1 is expressed both in schizonts and gametocytes. In mature schizonts, the protein localizes underneath the merozoite micronemes and interacts with PfAMA1, while in gametocytes PfWLP1 primarily accumulates underneath the plasma membrane and associates with PfCCp1 and Pfs230. Reverse genetics failed to disrupt the pfwlp1 gene, while haemagglutinin-tagging was feasible, suggesting a crucial function for PfWLP1 during blood stage replication. Conclusions This is the first report on a plasmodial WD40-repeat protein associating with cell adhesion proteins. Since WD40 domains are known to mediate protein-protein contact by serving as a rigid scaffold for protein interactions, the presented data suggest that PfWLP1 supports the stability of adhesion protein complexes of the plasmodial blood stages.}, language = {en} } @article{SassVanAckerFoerstneretal.2015, author = {Sass, Andrea M. and Van Acker, Heleen and F{\"o}rstner, Konrad U. and Van Nieuwerburgh, Filip and Deforce, Dieter and Vogel, J{\"o}rg and Coenye, Tom}, title = {Genome-wide transcription start site profiling in biofilm-grown Burkholderia cenocepacia J2315}, series = {BMC Genomics}, volume = {16}, journal = {BMC Genomics}, number = {775}, doi = {10.1186/s12864-015-1993-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-139748}, year = {2015}, abstract = {Background: Burkholderia cenocepacia is a soil-dwelling Gram-negative Betaproteobacterium with an important role as opportunistic pathogen in humans. Infections with B. cenocepacia are very difficult to treat due to their high intrinsic resistance to most antibiotics. Biofilm formation further adds to their antibiotic resistance. B. cenocepacia harbours a large, multi-replicon genome with a high GC-content, the reference genome of strain J2315 includes 7374 annotated genes. This study aims to annotate transcription start sites and identify novel transcripts on a whole genome scale. Methods: RNA extracted from B. cenocepacia J2315 biofilms was analysed by differential RNA-sequencing and the resulting dataset compared to data derived from conventional, global RNA-sequencing. Transcription start sites were annotated and further analysed according to their position relative to annotated genes. Results: Four thousand ten transcription start sites were mapped over the whole B. cenocepacia genome and the primary transcription start site of 2089 genes expressed in B. cenocepacia biofilms were defined. For 64 genes a start codon alternative to the annotated one was proposed. Substantial antisense transcription for 105 genes and two novel protein coding sequences were identified. The distribution of internal transcription start sites can be used to identify genomic islands in B. cenocepacia. A potassium pump strongly induced only under biofilm conditions was found and 15 non-coding small RNAs highly expressed in biofilms were discovered. Conclusions: Mapping transcription start sites across the B. cenocepacia genome added relevant information to the J2315 annotation. Genes and novel regulatory RNAs putatively involved in B. cenocepacia biofilm formation were identified. These findings will help in understanding regulation of B. cenocepacia biofilm formation.}, language = {en} } @article{FanLiChaoetal.2015, author = {Fan, Ben and Li, Lei and Chao, Yanjie and F{\"o}rstner, Konrad and Vogel, J{\"o}rg and Borriss, Rainer and Wu, Xiao-Qin}, title = {dRNA-Seq Reveals Genomewide TSSs and Noncoding RNAs of Plant Beneficial Rhizobacterium Bacillus amyloliquefaciens FZB42}, series = {PLoS One}, volume = {10}, journal = {PLoS One}, number = {11}, doi = {10.1371/journal.pone.0142002}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-138369}, pages = {e0142002}, year = {2015}, abstract = {Bacillus amyloliquefaciens subsp. plantarum FZB42 is a representative of Gram-positive plant-growth-promoting rhizobacteria (PGPR) that inhabit plant root environments. In order to better understand the molecular mechanisms of bacteria-plant symbiosis, we have systematically analyzed the primary transcriptome of strain FZB42 grown under rhizospheremimicking conditions using differential RNA sequencing (dRNA-seq). Our analysis revealed 4,877 transcription start sites for protein-coding genes, identified genes differentially expressed under different growth conditions, and corrected many previously mis-annotated genes. We also identified a large number of riboswitches and cis-encoded antisense RNAs, as well as trans-encoded small noncoding RNAs that may play important roles in the gene regulation of Bacillus. Overall, our analyses provided a landscape of Bacillus primary transcriptome and improved the knowledge of rhizobacteria-host interactions.}, language = {en} } @phdthesis{Frank2015, author = {Frank, Benjamin}, title = {Untersuchungen zur Autophagieinduktion in Leishmania major-infizierten Knochenmarksmakrophagen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-137277}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Die von der WHO zu den 17 wichtigsten NTDs gez{\"a}hlte Leishmaniose wird durch intrazellul{\"a}re Parasiten der Gattung Leishmania hervorgerufen. Der Lebenszyklus der Parasiten besteht aus zwei Phasen. Die l{\"a}nglichen und beweglichen Promastigoten kennzeichnen die Phase in der Sandm{\"u}cke - der Vektor der Leishmaniose. Hingegen ist die Phase im S{\"a}ugerwirt durch runde unbewegliche Amastigoten charakterisiert. Aufgrund des Mangels an potenten antileishmanialen Therapien wurde in der vorliegenden Arbeit die Interaktion zwischen L. m. Parasiten und der Hauptwirtszelle, der Makrophage, v. a. in Hinblick auf autophage Prozesse in den infizierten Makrophagen n{\"a}her untersucht, um demgem{\"a}ß neue Erkenntnisse zu gewinnen, welche bei der Herstellung zuk{\"u}nftiger anti-leishmanialer Medikamente helfen k{\"o}nnten. Bei der Autophagie handelt es sich um einen katabolen Prozess, wodurch Zellen bei Nahrungsmangel oder zellul{\"a}rem Stress ihre Hom{\"o}ostase erhalten k{\"o}nnen. Durch diesen Prozess k{\"o}nnen {\"u}berfl{\"u}ssige oder besch{\"a}digte Organellen recycelt werden, um die Funktionen der Zelle aufrechtzuerhalten. Daneben {\"u}bernimmt Autophagie auch eine essenzielle Rolle bei der Abwehr von ins Zytosol eindringenden Pathogenen. Mittels des neu etablierten totalen Autophagiescore konnte festgestellt werden, dass Autophagie in L. m.-infizierten BMDM induziert wird. Die intrazellul{\"a}ren Amastigoten werden durch Autophagie in den BMDM verdaut. Die erh{\"o}hte autophage Aktivit{\"a}t konnte zudem durch Western-Blot-Analysen der autophagierelevanten Proteine ATG5, LC3B und UB best{\"a}tigt werden. Die molekulargenetischen Untersuchungen von L. m.-infizier-ten BMDM mithilfe von Affymetrix Microarrays f{\"u}hrten zu einem Netzwerk aus autophagierelevanten und infektionsspezifischen Genen, welches als LISA bezeichnet worden ist. Hier hat sich ebenfalls eine starke Verkn{\"u}pfung von autophagierelevanten Genen und den Genen der Glykolyse, einem zweiten katabolen Prozess, gezeigt. Zudem konnten zwei weitere autophagierelevante und infektionsspezifische Gene außerhalb von LISA identifiziert werden, n{\"a}mlich Bnip3 und Ctse, welche im Anschluss genauer untersucht worden sind. Bei beiden Genen konnte auf Proteinebene gezeigt werden, dass sie in L. m.-infizierten BMDM signifikant erh{\"o}ht sind. Durch siRNA-Analysen konnte {\"u}berdies beobachtet werden, dass beide f{\"u}r die erfolgreiche Elimination der Amastigoten essenziell sind. Somit konnte mit den Proteinen BNIP3 und CTSE zwei potenzielle neue Ansatzpunkte f{\"u}r m{\"o}gliche zuk{\"u}nftige antileishmaniale Therapien gefunden werden. Auch die in LISA enthaltenen Gene stellen prinzipiell vielversprechende Ziele f{\"u}r k{\"u}nftige Medikamente gegen Leishmaniose dar. Durch all diese Untersuchungen kommt man dem Ziel einer neuen, gezielten und nebenwirkungs{\"a}rmeren Behandlung der Leishmaniose einen Schritt n{\"a}her.}, subject = {Autophagie}, language = {de} } @article{BeissSpiegelBoesetal.2015, author = {Beiss, Veronique and Spiegel, Holger and Boes, Alexander and Scheuermayer, Matthias and Reimann, Andreas and Schillberg, Stefan and Fischer, Rainer}, title = {Plant expression and characterization of the transmission-blocking vaccine candidate PfGAP50}, series = {BMC Biotechnology}, volume = {15}, journal = {BMC Biotechnology}, number = {108}, doi = {10.1186/s12896-015-0225-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-137327}, year = {2015}, abstract = {Background: Despite the limited success after decades of intensive research and development efforts, vaccination still represents the most promising strategy to significantly reduce the disease burden in malaria endemic regions. Besides the ultimate goal of inducing sterile protection in vaccinated individuals, the prevention of transmission by so-called transmission blocking vaccines (TBVs) is being regarded as an important feature of an efficient malaria eradication strategy. Recently, Plasmodium falciparum GAP50 (PfGAP50), a 44.6 kDa transmembrane protein that forms an essential part of the invasion machinery (glideosome) multi-protein complex, has been proposed as novel potential transmission-blocking candidate. Plant-based expression systems combine the advantages of eukaryotic expression with a up-scaling potential and a good product safety profile suitable for vaccine production. In this study we investigated the feasibility to use the transient plant expression to produce PfGAP50 suitable for the induction of parasite specific inhibitory antibodies. Results: We performed the transient expression of recombinant PfGAP50 in Nicotiana benthamiana leaves using endoplasmatic reticulum (ER) and plastid targeting. After IMAC-purification the protein yield and integrity was investigated by SDS-PAGE and Western Blot. Rabbit immune IgG derived by the immunization with the plastidtargeted variant of PfGAP50 was analyzed by immune fluorescence assay (IFA) and zygote inhibition assay (ZIA). PfGAP50 could be produced in both subcellular compartments at different yields IMAC (Immobilized Metal Affinity Chromatography) purification from extract yielded up to 4.1 mu g/g recombinant protein per fresh leaf material for ER-retarded and 16.2 mu g/g recombinant protein per fresh leave material for plasmid targeted PfGAP50, respectively. IgG from rabbit sera generated by immunization with the recombinant protein specifically recognized different parasite stages in immunofluorescence assay. Furthermore up to 55 \% inhibition in an in vitro zygote inhibition assay could be achieved using PfGAP50-specific rabbit immune IgG. Conclusions: The results of this study demonstrate that the plant-produced PfGAP50 is functional regarding the presentation of inhibitory epitopes and could be considered as component of a transmission-blocking malaria vaccine formulation.}, language = {en} } @article{OkoroBarquistConnoretal.2015, author = {Okoro, Chinyere K. and Barquist, Lars and Connor, Thomas R. and Harris, Simon R. and Clare, Simon and Stevens, Mark P. and Arends, Mark J. and Hale, Christine and Kane, Leanne and Pickard, Derek J. and Hill, Jennifer and Harcourt, Katherine and Parkhill, Julian and Dougan, Gordon and Kingsley, Robert A.}, title = {Signatures of adaptation in human invasive Salmonella Typhimurium ST313 populations from sub-Saharan Africa}, series = {PLoS Neglected Tropical Diseases}, volume = {9}, journal = {PLoS Neglected Tropical Diseases}, number = {3}, doi = {10.1371/journal.pntd.0003611}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-143779}, pages = {e0003611}, year = {2015}, abstract = {Two lineages of Salmonella enterica serovar Typhimurium (S. Typhimurium) of multi-locus sequence type ST313 have been linked with the emergence of invasive Salmonella disease across sub-Saharan Africa. The expansion of these lineages has a temporal association with the HIV pandemic and antibiotic usage. We analysed the whole genome sequence of 129 ST313 isolates representative of the two lineages and found evidence of lineage-specific genome degradation, with some similarities to that observed in S. Typhi. Individual ST313 S. Typhimurium isolates exhibit a distinct metabolic signature and modified enteropathogenesis in both a murine and cattle model of colitis, compared to S. Typhimurium outside of the ST313 lineages. These data define phenotypes that distinguish ST313 isolates from other S. Typhimurium and may represent adaptation to a distinct pathogenesis and lifestyle linked to an-immuno-compromised human population.}, language = {en} } @article{BergSchellingHailuetal.2015, author = {Berg, Stefan and Schelling, Esther and Hailu, Elena and Firdessa, Rebuma and Gumi, Balako and Erenso, Girume and Gadisa, Endalamaw and Mengistu, Araya and Habtamu, Meseret and Hussein, Jemal and Kiros, Teklu and Bekele, Shiferaw and Mekonnen, Wondale and Derese, Yohannes and Zinsstag, Jakob and Ameni, Gobena and Gagneux, Sebastien and Robertson, Brian D and Tschopp, Rea and Hewinson, Glyn and Yamuah, Lawrence and Gordon, Stephen V and Aseffa, Abraham}, title = {Investigation of the high rates of extrapulmonary tuberculosis in Ethiopia reveals no single driving factor and minimal evidence for zoonotic transmission of Mycobacterium bovis infection}, series = {BMC Infectious Diseases}, volume = {15}, journal = {BMC Infectious Diseases}, number = {112}, doi = {10.1186/s12879-015-0846-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-143935}, year = {2015}, abstract = {Background: Ethiopia, a high tuberculosis (TB) burden country, reports one of the highest incidence rates of extra-pulmonary TB dominated by cervical lymphadenitis (TBLN). Infection with Mycobacterium bovis has previously been excluded as the main reason for the high rate of extra-pulmonary TB in Ethiopia. Methods: Here we examined demographic and clinical characteristics of 953 pulmonary (PTB) and 1198 TBLN patients visiting 11 health facilities in distinct geographic areas of Ethiopia. Clinical characteristics were also correlated with genotypes of the causative agent, Mycobacterium tuberculosis. Results: No major patient or bacterial strain factor could be identified as being responsible for the high rate of TBLN, and there was no association with HIV infection. However, analysis of the demographic data of involved patients showed that having regular and direct contact with live animals was more associated with TBLN than with PTB, although no M. bovis was isolated from patients with TBLN. Among PTB patients, those infected with Lineage 4 reported "contact with other TB patient" more often than patients infected with Lineage 3 did (OR = 1.6, CI 95\% 1.0-2.7; p = 0.064). High fever, in contrast to low and moderate fever, was significantly associated with Lineage 4 (OR = 2.3; p = 0.024). On the other hand, TBLN cases infected with Lineage 4 tended to get milder symptoms overall for the constitutional symptoms than those infected with Lineage 3. Conclusions: The study suggests a complex role for multiple interacting factors in the epidemiology of extra-pulmonary TB in Ethiopia, including factors that can only be derived from population-based studies, which may prove to be significant for TB control in Ethiopia.}, language = {en} } @article{RodriguezRicoYepesetal.2015, author = {Rodriguez, H{\´e}ctor and Rico, Sergio and Yepes, Ana and Franco-Echevarr{\´i}a, Elsa and Antoraz, Sergio and Santamar{\´i}a, Ram{\´o}n I. and D{\´i}az, Margerita}, title = {The two kinases, AbrC1 and AbrC2, of the atypical two-component system AbrC are needed to regulate antibiotic production and differentiation in Streptomyces coelicolor}, series = {Frontiers in Microbiology}, volume = {6}, journal = {Frontiers in Microbiology}, number = {450}, doi = {10.3389/fmicb.2015.00450}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-143048}, year = {2015}, abstract = {Two-component systems (TCSs) are the most important sensing mechanisms in bacteria. In Streptomyces, TCSs-mediated responses to environmental stimuli are involved in the regulation of antibiotic production. This study examines the individual role of two histidine kinases (HKs), AbrC1 and AbrC2, which form part of an atypical TCS in Streptomyces coelicolor. gRT-PCR analysis of the expression of both kinases demonstrated that both are expressed at similar levels in NB and NMMP media. Single deletion of abrC1 elicited a significant increase in antibiotic production, while deletion of abrC2 did not have any clear effect. The origin of this phenotype, probably related to the differential phosphorylation ability of the two kinases, was also explored indirectly, analyzing the toxic phenotypes associated with high levels of phosphorylated RR. The higher the AbrC3 regulator phosphorylation rate, the greater the cell toxicity. For the first time, the present work shows in Streptomyces the combined involvement of two different HKs in the response of a regulator to environmental signals. Regarding the possible applications of this research, the fact that an abrC1 deletion mutant overproduces three of the S. coelicolor antibiotics makes this strain an excellent candidate as a host for the heterologous production of secondary metabolites.}, language = {en} } @article{AfonsoGrunzHoffmeierMuelleretal.2015, author = {Afonso-Grunz, Fabian and Hoffmeier, Klaus and M{\"u}ller, S{\"o}ren and Westermann, Alexander J. and Rotter, Bj{\"o}rn and Vogel, J{\"o}rg and Winter, Peter and Kahl, G{\"u}nter}, title = {Dual 3'Seq using deepSuperSAGE uncovers transcriptomes of interacting Salmonella enterica Typhimurium and human host cells}, series = {BMC Genomics}, volume = {16}, journal = {BMC Genomics}, number = {323}, doi = {10.1186/s12864-015-1489-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-143230}, year = {2015}, abstract = {Background: The interaction of eukaryotic host and prokaryotic pathogen cells is linked to specific changes in the cellular proteome, and consequently to infection-related gene expression patterns of the involved cells. To simultaneously assess the transcriptomes of both organisms during their interaction we developed dual 3'Seq, a tag-based sequencing protocol that allows for exact quantification of differentially expressed transcripts in interacting pro-and eukaryotic cells without prior fixation or physical disruption of the interaction. Results: Human epithelial cells were infected with Salmonella enterica Typhimurium as a model system for invasion of the intestinal epithelium, and the transcriptional response of the infected host cells together with the differential expression of invading and intracellular pathogen cells was determined by dual 3'Seq coupled with the next-generation sequencing-based transcriptome profiling technique deepSuperSAGE (deep Serial Analysis of Gene Expression). Annotation to reference transcriptomes comprising the operon structure of the employed S. enterica Typhimurium strain allowed for in silico separation of the interacting cells including quantification of polycistronic RNAs. Eighty-nine percent of the known loci are found to be transcribed in prokaryotic cells prior or subsequent to infection of the host, while 75\% of all protein-coding loci are represented in the polyadenylated transcriptomes of human host cells. Conclusions: Dual 3'Seq was alternatively coupled to MACE (Massive Analysis of cDNA ends) to assess the advantages and drawbacks of a library preparation procedure that allows for sequencing of longer fragments. Additionally, the identified expression patterns of both organisms were validated by qRT-PCR using three independent biological replicates, which confirmed that RELB along with NFKB1 and NFKB2 are involved in the initial immune response of epithelial cells after infection with S. enterica Typhimurium.}, language = {en} }