@article{ScholzGehringGuanetal.2015, author = {Scholz, Nicole and Gehring, Jennifer and Guan, Chonglin and Ljaschenko, Dmitrij and Fischer, Robin and Lakshmanan, Vetrivel and Kittel, Robert J. and Langenhan, Tobias}, title = {The adhesion GPCR Latrophilin/CIRL shapes mechanosensation}, series = {Cell Reports}, volume = {11}, journal = {Cell Reports}, doi = {10.1016/j.celrep.2015.04.008}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148626}, pages = {866-874}, year = {2015}, abstract = {G-protein-coupled receptors (GPCRs) are typically regarded as chemosensors that control cellular states in response to soluble extracellular cues. However, the modality of stimuli recognized through adhesion GPCR (aGPCR), the second largest class of the GPCR superfamily, is unresolved. Our study characterizes the Drosophila aGPCR Latrophilin/dCirl, a prototype member of this enigmatic receptor class. We show that dCirl shapes the perception of tactile, proprioceptive, and auditory stimuli through chordotonal neurons, the principal mechanosensors of Drosophila. dCirl sensitizes these neurons for the detection of mechanical stimulation by amplifying their input-output function. Our results indicate that aGPCR may generally process and modulate the perception of mechanical signals, linking these important stimuli to the sensory canon of the GPCR superfamily.}, language = {en} } @article{GaoNagpalSchneideretal.2015, author = {Gao, Shiqiang and Nagpal, Jatin and Schneider, Martin W. and Kozjak-Pavlovic, Vera and Nagel, Georg and Gottschalk, Alexander}, title = {Optogenetic manipulation of cGMP in cells and animals by the tightly light-regulated guanylyl-cyclase opsin CyclOp}, series = {Nature Communications}, volume = {6}, journal = {Nature Communications}, number = {8046}, doi = {10.1038/ncomms9046}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148197}, year = {2015}, abstract = {Cyclic GMP (cGMP) signalling regulates multiple biological functions through activation of protein kinase G and cyclic nucleotide-gated (CNG) channels. In sensory neurons, cGMP permits signal modulation, amplification and encoding, before depolarization. Here we implement a guanylyl cyclase rhodopsin from Blastocladiella emersonii as a new optogenetic tool (BeCyclOp), enabling rapid light-triggered cGMP increase in heterologous cells (Xenopus oocytes, HEK293T cells) and in Caenorhabditis elegans. Among five different fungal CyclOps, exhibiting unusual eight transmembrane topologies and cytosolic N-termini, BeCyclOp is the superior optogenetic tool (light/dark activity ratio: 5,000; no cAMP production; turnover (20 °C) ~17 cGMPs\(^{-1}\)). Via co-expressed CNG channels (OLF in oocytes, TAX-2/4 in C. elegans muscle), BeCyclOp photoactivation induces a rapid conductance increase and depolarization at very low light intensities. In O\(_2\)/CO\(_2\) sensory neurons of C. elegans, BeCyclOp activation evokes behavioural responses consistent with their normal sensory function. BeCyclOp therefore enables precise and rapid optogenetic manipulation of cGMP levels in cells and animals.}, language = {en} } @article{WaeldchenLehmannKleinetal.2015, author = {W{\"a}ldchen, Sina and Lehmann, Julian and Klein, Teresa and van de Linde, Sebastian and Sauer, Markus}, title = {Light-induced cell damage in live-cell super-resolution microscopy}, series = {Scientific Reports}, volume = {5}, journal = {Scientific Reports}, number = {15348}, doi = {10.1038/srep15348}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-145207}, year = {2015}, abstract = {Super-resolution microscopy can unravel previously hidden details of cellular structures but requires high irradiation intensities to use the limited photon budget efficiently. Such high photon densities are likely to induce cellular damage in live-cell experiments. We applied single-molecule localization microscopy conditions and tested the influence of irradiation intensity, illumination-mode, wavelength, light-dose, temperature and fluorescence labeling on the survival probability of different cell lines 20-24 hours after irradiation. In addition, we measured the microtubule growth speed after irradiation. The photo-sensitivity is dramatically increased at lower irradiation wavelength. We observed fixation, plasma membrane permeabilization and cytoskeleton destruction upon irradiation with shorter wavelengths. While cells stand light intensities of similar to 1 kW cm\(^{-2}\) at 640 nm for several minutes, the maximum dose at 405 nm is only similar to 50 J cm\(^{-2}\), emphasizing red fluorophores for live-cell localization microscopy. We also present strategies to minimize phototoxic factors and maximize the cells ability to cope with higher irradiation intensities.}, language = {en} } @article{RemmeleLutherBalkenholetal.2015, author = {Remmele, Christian W. and Luther, Christian H. and Balkenhol, Johannes and Dandekar, Thomas and M{\"u}ller, Tobias and Dittrich, Marcus T.}, title = {Integrated inference and evaluation of host-fungi interaction networks}, series = {Frontiers in Microbiology}, volume = {6}, journal = {Frontiers in Microbiology}, number = {764}, doi = {10.3389/fmicb.2015.00764}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148278}, year = {2015}, abstract = {Fungal microorganisms frequently lead to life-threatening infections. Within this group of pathogens, the commensal Candida albicans and the filamentous fungus Aspergillus fumigatus are by far the most important causes of invasive mycoses in Europe. A key capability for host invasion and immune response evasion are specific molecular interactions between the fungal pathogen and its human host. Experimentally validated knowledge about these crucial interactions is rare in literature and even specialized host pathogen databases mainly focus on bacterial and viral interactions whereas information on fungi is still sparse. To establish large-scale host fungi interaction networks on a systems biology scale, we develop an extended inference approach based on protein orthology and data on gene functions. Using human and yeast intraspecies networks as template, we derive a large network of pathogen host interactions (PHI). Rigorous filtering and refinement steps based on cellular localization and pathogenicity information of predicted interactors yield a primary scaffold of fungi human and fungi mouse interaction networks. Specific enrichment of known pathogenicity-relevant genes indicates the biological relevance of the predicted PHI. A detailed inspection of functionally relevant subnetworks reveals novel host fungal interaction candidates such as the Candida virulence factor PLB1 and the anti-fungal host protein APP. Our results demonstrate the applicability of interolog-based prediction methods for host fungi interactions and underline the importance of filtering and refinement steps to attain biologically more relevant interactions. This integrated network framework can serve as a basis for future analyses of high-throughput host fungi transcriptome and proteome data.}, language = {en} } @article{KarlDandekar2015, author = {Karl, Stefan and Dandekar, Thomas}, title = {Convergence behaviour and control in non-linear biological networks}, series = {Scientific Reports}, volume = {5}, journal = {Scientific Reports}, number = {09746}, doi = {10.1038/srep09746}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148510}, year = {2015}, abstract = {Control of genetic regulatory networks is challenging to define and quantify. Previous control centrality metrics, which aim to capture the ability of individual nodes to control the system, have been found to suffer from plausibility and applicability problems. Here we present a new approach to control centrality based on network convergence behaviour, implemented as an extension of our genetic regulatory network simulation framework Jimena (http://stefan-karl.de/jimena). We distinguish three types of network control, and show how these mathematical concepts correspond to experimentally verified node functions and signalling pathways in immunity and cell differentiation: Total control centrality quantifies the impact of node mutations and identifies potential pharmacological targets such as genes involved in oncogenesis (e.g. zinc finger protein GLI2 or bone morphogenetic proteins in chondrocytes). Dynamic control centrality describes relaying functions as observed in signalling cascades (e.g. src kinase or Jak/Stat pathways). Value control centrality measures the direct influence of the value of the node on the network (e.g. Indian hedgehog as an essential regulator of proliferation in chondrocytes). Surveying random scale-free networks and biological networks, we find that control of the network resides in few high degree driver nodes and networks can be controlled best if they are sparsely connected.}, language = {en} } @article{MatosMachadoSchartletal.2015, author = {Matos, I and Machado, M. P. and Schartl, M. and Coelho, M. M.}, title = {Gene expression dosage regulation in an allopolyploid fish}, series = {PLoS ONE}, volume = {10}, journal = {PLoS ONE}, number = {3}, doi = {10.1371/journal.pone.0116309}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-143565}, pages = {e0116309}, year = {2015}, abstract = {How allopolyploids are able not only to cope but profit from their condition is a question that remains elusive, but is of great importance within the context of successful allopolyploid evolution. One outstanding example of successful allopolyploidy is the endemic Iberian cyprinid Squalius alburnoides. Previously, based on the evaluation of a few genes, it was reported that the transcription levels between diploid and triploid S. alburnoides were similar. If this phenomenon occurs on a full genomic scale, a wide functional "diploidization'' could be related to the success of these polyploids. We generated RNA-seq data from whole juvenile fish and from adult livers, to perform the first comparative quantitative transcriptomic analysis between diploid and triploid individuals of a vertebrate allopolyploid. Together with an assay to estimate relative expression per cell, it was possible to infer the relative sizes of transcriptomes. This showed that diploid and triploid S. alburnoides hybrids have similar liver transcriptome sizes. This in turn made it valid to directly compare the S. alburnoides RNA-seq transcript data sets and obtain a profile of dosage responses across the S. alburnoides transcriptome. We found that 64\% of transcripts in juveniles' samples and 44\% in liver samples differed less than twofold between diploid and triploid hybrids (similar expression). Yet, respectively 29\% and 15\% of transcripts presented accurate dosage compensation (PAA/PA expression ratio of 1 instead of 1.5). Therefore, an exact functional diploidization of the triploid genome does not occur, but a significant down regulation of gene expression in triploids was observed. However, for those genes with similar expression levels between diploids and triploids, expression is not globally strictly proportional to gene dosage nor is it set to a perfect diploid level. This quantitative expression flexibility may be a strong contributor to overcome the genomic shock, and be an immediate evolutionary advantage of allopolyploids.}, language = {en} } @article{AlizadehradKruegerEngstleretal.2015, author = {Alizadehrad, Davod and Kr{\"u}ger, Timothy and Engstler, Markus and Stark, Holger}, title = {Simulating the complex cell design of Trypanosoma brucei and its motility}, series = {PLOS Computational Biology}, volume = {11}, journal = {PLOS Computational Biology}, number = {1}, doi = {10.1371/journal.pcbi.1003967}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-144610}, pages = {e1003967}, year = {2015}, abstract = {The flagellate Trypanosoma brucei, which causes the sleeping sickness when infecting a mammalian host, goes through an intricate life cycle. It has a rather complex propulsion mechanism and swims in diverse microenvironments. These continuously exert selective pressure, to which the trypanosome adjusts with its architecture and behavior. As a result, the trypanosome assumes a diversity of complex morphotypes during its life cycle. However, although cell biology has detailed form and function of most of them, experimental data on the dynamic behavior and development of most morphotypes is lacking. Here we show that simulation science can predict intermediate cell designs by conducting specific and controlled modifications of an accurate, nature-inspired cell model, which we developed using information from live cell analyses. The cell models account for several important characteristics of the real trypanosomal morphotypes, such as the geometry and elastic properties of the cell body, and their swimming mechanism using an eukaryotic flagellum. We introduce an elastic network model for the cell body, including bending rigidity and simulate swimming in a fluid environment, using the mesoscale simulation technique called multi-particle collision dynamics. The in silico trypanosome of the bloodstream form displays the characteristic in vivo rotational and translational motility pattern that is crucial for survival and virulence in the vertebrate host. Moreover, our model accurately simulates the trypanosome's tumbling and backward motion. We show that the distinctive course of the attached flagellum around the cell body is one important aspect to produce the observed swimming behavior in a viscous fluid, and also required to reach the maximal swimming velocity. Changing details of the flagellar attachment generates less efficient swimmers. We also simulate different morphotypes that occur during the parasite's development in the tsetse fly, and predict a flagellar course we have not been able to measure in experiments so far.}, language = {en} } @article{SchartlShenMaurusetal.2015, author = {Schartl, Manfred and Shen, Yingjia and Maurus, Katja and Walter, Ron and Tomlinson, Chad and Wilson, Richard K. and Postlethwait, John and Warren, Wesley C.}, title = {Whole body melanoma transcriptome response in medaka}, series = {PLoS ONE}, volume = {10}, journal = {PLoS ONE}, number = {12}, doi = {10.1371/journal.pone.0143057}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-144714}, pages = {e0143057}, year = {2015}, abstract = {The incidence of malignant melanoma continues to increase each year with poor prognosis for survival in many relapse cases. To reverse this trend, whole body response measures are needed to discover collaborative paths to primary and secondary malignancy. Several species of fish provide excellent melanoma models because fish and human melanocytes both appear in the epidermis, and fish and human pigment cell tumors share conserved gene expression signatures. For the first time, we have examined the whole body transcriptome response to invasive melanoma as a prelude to using transcriptome profiling to screen for drugs in a medaka (Oryzias latipes) model. We generated RNA-seq data from whole body RNA isolates for controls and melanoma fish. After testing for differential expression, 396 genes had significantly different expression (adjusted p-value <0.02) in the whole body transcriptome between melanoma and control fish; 379 of these genes were matched to human orthologs with 233 having annotated human gene symbols and 14 matched genes that contain putative deleterious variants in human melanoma at varying levels of recurrence. A detailed canonical pathway evaluation for significant enrichment showed the top scoring pathway to be antigen presentation but also included the expected melanocyte development and pigmentation signaling pathway. Results revealed a profound down-regulation of genes involved in the immune response, especially the innate immune system. We hypothesize that the developing melanoma actively suppresses the immune system responses of the body in reacting to the invasive malignancy, and that this mal-adaptive response contributes to disease progression, a result that suggests our whole-body transcriptomic approach merits further use. In these findings, we also observed novel genes not yet identified in human melanoma expression studies and uncovered known and new candidate drug targets for further testing in this malignant melanoma medaka model.}, language = {en} } @article{TuchscherrBischoffLattaretal.2015, author = {Tuchscherr, Lorena and Bischoff, Markus and Lattar, Santiago M. and Noto Llana, Mariangeles and Pf{\"o}rtner, Henrike and Niemann, Silke and Geraci, Jennifer and Van de Vyver, H{\´e}l{\`e}ne and Fraunholz, Martin J. and Cheung, Ambrose L. and Herrmann, Mathias and V{\"o}lker, Uwe and Sordelli, Daniel O. and Peters, Georg and Loeffler, Bettina}, title = {Sigma factor SigB is crucial to mediate Staphylococcus aureus adaptation during chronic infections}, series = {PLoS Pathogens}, volume = {11}, journal = {PLoS Pathogens}, number = {4}, doi = {10.1371/journal.ppat.1004870}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-143419}, pages = {e1004870}, year = {2015}, abstract = {Staphylococcus aureus is a major human pathogen that causes a range of infections from acute invasive to chronic and difficult-to-treat. Infection strategies associated with persisting S. aureus infections are bacterial host cell invasion and the bacterial ability to dynamically change phenotypes from the aggressive wild-type to small colony variants (SCVs), which are adapted for intracellular long-term persistence. The underlying mechanisms of the bacterial switching and adaptation mechanisms appear to be very dynamic, but are largely unknown. Here, we analyzed the role and the crosstalk of the global S. aureus regulators agr, sarA and SigB by generating single, double and triple mutants, and testing them with proteome analysis and in different in vitro and in vivo infection models. We were able to demonstrate that SigB is the crucial factor for adaptation in chronic infections. During acute infection, the bacteria require the simultaneous action of the agr and sarA loci to defend against invading immune cells by causing inflammation and cytotoxicity and to escape from phagosomes in their host cells that enable them to settle an infection at high bacterial density. To persist intracellularly the bacteria subsequently need to silence agr and sarA. Indeed agr and sarA deletion mutants expressed a much lower number of virulence factors and could persist at high numbers intracellularly. SigB plays a crucial function to promote bacterial intracellular persistence. In fact, \(\Delta\)sigB-mutants did not generate SCVs and were completely cleared by the host cells within a few days. In this study we identified SigB as an essential factor that enables the bacteria to switch from the highly aggressive phenotype that settles an acute infection to a silent SCV-phenotype that allows for long-term intracellular persistence. Consequently, the SigB-operon represents a possible target to develop preventive and therapeutic strategies against chronic and therapy-refractory infections.}, language = {en} } @article{LamatschAdolfssonSenioretal.2015, author = {Lamatsch, Dunja K. and Adolfsson, Sofia and Senior, Alistair M. and Christiansen, Guntram and Pichler, Maria and Ozaki, Yuichi and Smeds, Linnea and Schartl, Manfred and Nakagawa, Shinichi}, title = {A transcriptome derived female-specific marker from the invasive Western mosquitofish (Gambusia affinis)}, series = {PLoS ONE}, volume = {10}, journal = {PLoS ONE}, number = {2}, doi = {10.1371/journal.pone.0118214}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-144004}, pages = {e0118214}, year = {2015}, abstract = {Sex-specific markers are a prerequisite for understanding reproductive biology, genetic factors involved in sex differences, mechanisms of sex determination, and ultimately the evolution of sex chromosomes. The Western mosquitofish, Gambusia affinis, may be considered a model species for sex-chromosome evolution, as it displays female heterogamety (ZW/ZZ), and is also ecologically interesting as a worldwide invasive species. Here, de novo RNA-sequencing on the gonads of sexually mature G. affinis was used to identify contigs that were highly transcribed in females but not in males (i.e., transcripts with ovary-specific expression). Subsequently, 129 primer pairs spanning 79 contigs were tested by PCR to identify sex-specific transcripts. Of those primer pairs, one female-specific DNA marker was identified, Sanger sequenced and subsequently validated in 115 fish. Sequence analyses revealed a high similarity between the identified sex-specific marker and the 3' UTR of the aminomethyl transferase (amt) gene of the closely related platyfish (Xiphophorus maculatus). This is the first time that RNA-seq has been used to successfully characterize a sex-specific marker in a fish species in the absence of a genome map. Additionally, the identified sex-specific marker represents one of only a handful of such markers in fishes.}, language = {en} }