@article{RudelFaulstichBoettcheretal.2013, author = {Rudel, Thomas and Faulstich, Michaela and B{\"o}ttcher, Jan-Peter and Meyer, Thomas F. and Fraunholz, Martin}, title = {Pilus Phase Variation Switches Gonococcal Adherence to Invasion by Caveolin-1-Dependent Host Cell Signaling}, series = {PLoS Pathogens}, journal = {PLoS Pathogens}, doi = {10.1371/journal.ppat.1003373}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-96679}, year = {2013}, abstract = {Many pathogenic bacteria cause local infections but occasionally invade into the blood stream, often with fatal outcome. Very little is known about the mechanism underlying the switch from local to invasive infection. In the case of Neisseria gonorrhoeae, phase variable type 4 pili (T4P) stabilize local infection by mediating microcolony formation and inducing anti-invasive signals. Outer membrane porin PorBIA, in contrast, is associated with disseminated infection and facilitates the efficient invasion of gonococci into host cells. Here we demonstrate that loss of pili by natural pilus phase variation is a prerequisite for the transition from local to invasive infection. Unexpectedly, both T4P-mediated inhibition of invasion and PorBIA-triggered invasion utilize membrane rafts and signaling pathways that depend on caveolin-1-Y14 phosphorylation (Cav1-pY14). We identified p85 regulatory subunit of PI3 kinase (PI3K) and phospholipase Cγ1 as new, exclusive and essential interaction partners for Cav1-pY14 in the course of PorBIA-induced invasion. Active PI3K induces the uptake of gonococci via a new invasion pathway involving protein kinase D1. Our data describe a novel route of bacterial entry into epithelial cells and offer the first mechanistic insight into the switch from local to invasive gonococcal infection.}, language = {en} } @article{BrehmKoziolKrohne2013, author = {Brehm, Klaus and Koziol, Uriel and Krohne, Georg}, title = {Anatomy and development of the larval nervous system in Echinococcus multilocularis}, series = {Frontiers in Zoology}, journal = {Frontiers in Zoology}, doi = {10.1186/1742-9994-10-24}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-96504}, year = {2013}, abstract = {Background The metacestode larva of Echinococcus multilocularis (Cestoda: Taeniidae) develops in the liver of intermediate hosts (typically rodents, or accidentally in humans) as a labyrinth of interconnected cysts that infiltrate the host tissue, causing the disease alveolar echinococcosis. Within the cysts, protoscoleces (the infective stage for the definitive canid host) arise by asexual multiplication. These consist of a scolex similar to that of the adult, invaginated within a small posterior body. Despite the importance of alveolar echinococcosis for human health, relatively little is known about the basic biology, anatomy and development of E. multilocularis larvae, particularly with regard to their nervous system. Results We describe the existence of a subtegumental nerve net in the metacestode cysts, which is immunoreactive for acetylated tubulin-α and contains small populations of nerve cells that are labeled by antibodies raised against several invertebrate neuropeptides. However, no evidence was found for the existence of cholinergic or serotoninergic elements in the cyst wall. Muscle fibers occur without any specific arrangement in the subtegumental layer, and accumulate during the invaginations of the cyst wall that form brood capsules, where protoscoleces develop. The nervous system of the protoscolex develops independently of that of the metacestode cyst, with an antero-posterior developmental gradient. The combination of antibodies against several nervous system markers resulted in a detailed description of the protoscolex nervous system, which is remarkably complex and already similar to that of the adult worm. Conclusions We provide evidence for the first time of the existence of a nervous system in the metacestode cyst wall, which is remarkable given the lack of motility of this larval stage, and the lack of serotoninergic and cholinergic elements. We propose that it could function as a neuroendocrine system, derived from the nervous system present in the bladder tissue of other taeniids. The detailed description of the development and anatomy of the protoscolex neuromuscular system is a necessary first step toward the understanding of the developmental mechanisms operating in these peculiar larval stages.}, language = {en} } @article{WolfChenSongetal.2013, author = {Wolf, Matthias and Chen, Shilin and Song, Jingyuan and Ankenbrand, Markus and M{\"u}ller, Tobias}, title = {Compensatory Base Changes in ITS2 Secondary Structures Correlate with the Biological Species Concept Despite Intragenomic Variability in ITS2 Sequences - A Proof of Concept}, series = {PLoS ONE}, journal = {PLoS ONE}, doi = {10.1371/journal.pone.0066726}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-96450}, year = {2013}, abstract = {Compensatory base changes (CBCs) in internal transcribed spacer 2 (ITS2) rDNA secondary structures correlate with Ernst Mayr's biological species concept. This hypothesis also referred to as the CBC species concept recently was subjected to large-scale testing, indicating two distinct probabilities. (1) If there is a CBC then there are two different species with a probability of ~0.93. (2) If there is no CBC then there is the same species with a probability of ~0.76. In ITS2 research, however, the main problem is the multicopy nature of ITS2 sequences. Most recently, 454 pyrosequencing data have been used to characterize more than 5000 intragenomic variations of ITS2 regions from 178 plant species, demonstrating that mutation of ITS2 is frequent, with a mean of 35 variants per species, respectively per individual organism. In this study, using those 454 data, the CBC criterion is reconsidered in the light of intragenomic variability, a proof of concept, a necessary criterion, expecting no intragenomic CBCs in variant ITS2 copies. In accordance with the CBC species concept, we could demonstrate that the probability that there is no intragenomic CBC is ~0.99.}, language = {en} } @article{StreinzerBrockmannNagarajaetal.2013, author = {Streinzer, Martin and Brockmann, Axel and Nagaraja, Narayanappa and Spaethe, Johannes}, title = {Sex and Caste-Specific Variation in Compound Eye Morphology of Five Honeybee Species}, series = {PLoS ONE}, journal = {PLoS ONE}, doi = {10.1371/journal.pone.0057702}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-96412}, year = {2013}, abstract = {Ranging from dwarfs to giants, the species of honeybees show remarkable differences in body size that have placed evolutionary constrains on the size of sensory organs and the brain. Colonies comprise three adult phenotypes, drones and two female castes, the reproductive queen and sterile workers. The phenotypes differ with respect to tasks and thus selection pressures which additionally constrain the shape of sensory systems. In a first step to explore the variability and interaction between species size-limitations and sex and caste-specific selection pressures in sensory and neural structures in honeybees, we compared eye size, ommatidia number and distribution of facet lens diameters in drones, queens and workers of five species (Apis andreniformis, A. florea, A. dorsata, A. mellifera, A. cerana). In these species, male and female eyes show a consistent sex-specific organization with respect to eye size and regional specialization of facet diameters. Drones possess distinctly enlarged eyes with large dorsal facets. Aside from these general patterns, we found signs of unique adaptations in eyes of A. florea and A. dorsata drones. In both species, drone eyes are disproportionately enlarged. In A. dorsata the increased eye size results from enlarged facets, a likely adaptation to crepuscular mating flights. In contrast, the relative enlargement of A. florea drone eyes results from an increase in ommatidia number, suggesting strong selection for high spatial resolution. Comparison of eye morphology and published mating flight times indicates a correlation between overall light sensitivity and species-specific mating flight times. The correlation suggests an important role of ambient light intensities in the regulation of species-specific mating flight times and the evolution of the visual system. Our study further deepens insights into visual adaptations within the genus Apis and opens up future perspectives for research to better understand the timing mechanisms and sensory physiology of mating related signals.}, language = {en} } @article{SchulzeTillichDandekaretal.2013, author = {Schulze, Katja and Tillich, Ulrich M. and Dandekar, Thomas and Frohme, Marcus}, title = {PlanktoVision - an automated analysis system for the identification of phytoplankton}, series = {BMC Bioinformatics}, journal = {BMC Bioinformatics}, doi = {10.1186/1471-2105-14-115}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-96395}, year = {2013}, abstract = {Background Phytoplankton communities are often used as a marker for the determination of fresh water quality. The routine analysis, however, is very time consuming and expensive as it is carried out manually by trained personnel. The goal of this work is to develop a system for an automated analysis. Results A novel open source system for the automated recognition of phytoplankton by the use of microscopy and image analysis was developed. It integrates the segmentation of the organisms from the background, the calculation of a large range of features, and a neural network for the classification of imaged organisms into different groups of plankton taxa. The analysis of samples containing 10 different taxa showed an average recognition rate of 94.7\% and an average error rate of 5.5\%. The presented system has a flexible framework which easily allows expanding it to include additional taxa in the future. Conclusions The implemented automated microscopy and the new open source image analysis system - PlanktoVision - showed classification results that were comparable or better than existing systems and the exclusion of non-plankton particles could be greatly improved. The software package is published as free software and is available to anyone to help make the analysis of water quality more reproducible and cost effective.}, language = {en} } @article{Kozjak‑PavlovicOttUtechetal.2013, author = {Kozjak‑Pavlovic, Vera and Ott, Christine and Utech, Mandy and Goetz, Monika and Rudel, Thomas}, title = {Requirements for the import of neisserial Omp85 into the outer membrane of human mitochondria}, series = {Bioscience Reports}, journal = {Bioscience Reports}, doi = {10.1042/BSR20130007}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-96381}, year = {2013}, abstract = {β-Barrel proteins are present only in the outer membranes of Gram-negative bacteria, chloroplasts and mitochondria. Fungal mitochondria were shown to readily import and assemble bacterial β-barrel proteins, but human mitochondria exhibit certain selectivity. Whereas enterobacterial β-barrel proteins are not imported, neisserial ones are. Of those, solely neisserial Omp85 is integrated into the outer membrane of mitochondria. In this study, we wanted to identify the signal that targets neisserial β-barrel proteins to mitochondria. We exchanged parts of neisserial Omp85 and PorB with their Escherichia coli homologues BamA and OmpC. For PorB, we could show that its C-terminal quarter can direct OmpC to mitochondria. In the case of Omp85, we could identify several amino acids of the C-terminal β-sorting signal as crucial for mitochondrial targeting. Additionally, we found that at least two POTRA (polypeptide-transport associated) domains and not only the β-sorting signal of Omp85 are needed for its membrane integration and function in human mitochondria. We conclude that the signal that directs neisserial β-barrel proteins to mitochondria is not conserved between these proteins. Furthermore, a linear mitochondrial targeting signal probably does not exist. It is possible that the secondary structure of β-barrel proteins plays a role in directing these proteins to mitochondria.}, language = {en} } @article{DeekenGohlkeScholzetal.2013, author = {Deeken, Rosalia and Gohlke, Jochen and Scholz, Claus-Juergen and Kneitz, Susanne and Weber, Dana and Fuchs, Joerg and Hedrich, Rainer}, title = {DNA Methylation Mediated Control of Gene Expression Is Critical for Development of Crown Gall Tumors}, series = {PLoS Genetics}, journal = {PLoS Genetics}, doi = {10.1371/journal.pgen.1003267}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-96318}, year = {2013}, abstract = {Crown gall tumors develop after integration of the T-DNA of virulent Agrobacterium tumefaciens strains into the plant genome. Expression of the T-DNA-encoded oncogenes triggers proliferation and differentiation of transformed plant cells. Crown gall development is known to be accompanied by global changes in transcription, metabolite levels, and physiological processes. High levels of abscisic acid (ABA) in crown galls regulate expression of drought stress responsive genes and mediate drought stress acclimation, which is essential for wild-type-like tumor growth. An impact of epigenetic processes such as DNA methylation on crown gall development has been suggested; however, it has not yet been investigated comprehensively. In this study, the methylation pattern of Arabidopsis thaliana crown galls was analyzed on a genome-wide scale as well as at the single gene level. Bisulfite sequencing analysis revealed that the oncogenes Ipt, IaaH, and IaaM were unmethylated in crown galls. Nevertheless, the oncogenes were susceptible to siRNA-mediated methylation, which inhibited their expression and subsequently crown gall growth. Genome arrays, hybridized with methylated DNA obtained by immunoprecipitation, revealed a globally hypermethylated crown gall genome, while promoters were rather hypomethylated. Mutants with reduced non-CG methylation developed larger tumors than the wild-type controls, indicating that hypermethylation inhibits plant tumor growth. The differential methylation pattern of crown galls and the stem tissue from which they originate correlated with transcriptional changes. Genes known to be transcriptionally inhibited by ABA and methylated in crown galls became promoter methylated upon treatment of A. thaliana with ABA. This suggests that the high ABA levels in crown galls may mediate DNA methylation and regulate expression of genes involved in drought stress protection. In summary, our studies provide evidence that epigenetic processes regulate gene expression, physiological processes, and the development of crown gall tumors.}, language = {en} } @article{AlsheimerLinkJahnetal.2013, author = {Alsheimer, Manfred and Link, Jana and Jahn, Daniel and Schmitt, Johannes and G{\"o}b, Eva and Baar, Johannes and Ortega, Sagrario and Benavente, Ricardo}, title = {The Meiotic Nuclear Lamina Regulates Chromosome Dynamics and Promotes Efficient Homologous Recombination in the Mouse}, series = {PLoS Genetics}, journal = {PLoS Genetics}, doi = {10.1371/journal.pgen.1003261}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-96285}, year = {2013}, abstract = {The nuclear lamina is the structural scaffold of the nuclear envelope and is well known for its central role in nuclear organization and maintaining nuclear stability and shape. In the past, a number of severe human disorders have been identified to be associated with mutations in lamins. Extensive research on this topic has provided novel important clues about nuclear lamina function. These studies have contributed to the knowledge that the lamina constitutes a complex multifunctional platform combining both structural and regulatory functions. Here, we report that, in addition to the previously demonstrated significance for somatic cell differentiation and maintenance, the nuclear lamina is also an essential determinant for germ cell development. Both male and female mice lacking the short meiosis-specific A-type lamin C2 have a severely defective meiosis, which at least in the male results in infertility. Detailed analysis revealed that lamin C2 is required for telomere-driven dynamic repositioning of meiotic chromosomes. Loss of lamin C2 affects precise synapsis of the homologs and interferes with meiotic double-strand break repair. Taken together, our data explain how the nuclear lamina contributes to meiotic chromosome behaviour and accurate genome haploidization on a mechanistic level.}, language = {en} } @article{PielstroemRoces2013, author = {Pielstr{\"o}m, Steffen and Roces, Flavio}, title = {Sequential Soil Transport and Its Influence on the Spatial Organisation of Collective Digging in Leaf-Cutting Ants}, series = {PLoS ONE}, journal = {PLoS ONE}, doi = {10.1371/journal.pone.0057040}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-96275}, year = {2013}, abstract = {The Chaco leaf-cutting ant Atta vollenweideri (Forel) inhabits large and deep subterranean nests composed of a large number of fungus and refuse chambers. The ants dispose of the excavated soil by forming small pellets that are carried to the surface. For ants in general, the organisation of underground soil transport during nest building remains completely unknown. In the laboratory, we investigated how soil pellets are formed and transported, and whether their occurrence influences the spatial organisation of collective digging. Similar to leaf transport, we discovered size matching between soil pellet mass and carrier mass. Workers observed while digging excavated pellets at a rate of 26 per hour. Each excavator deposited its pellets in an individual cluster, independently of the preferred deposition sites of other excavators. Soil pellets were transported sequentially over 2 m, and the transport involved up to 12 workers belonging to three functionally distinct groups: excavators, several short-distance carriers that dropped the collected pellets after a few centimetres, and long-distance, last carriers that reached the final deposition site. When initiating a new excavation, the proportion of long-distance carriers increased from 18\% to 45\% within the first five hours, and remained unchanged over more than 20 hours. Accumulated, freshly-excavated pellets significantly influenced the workers' decision where to start digging in a choice experiment. Thus, pellets temporarily accumulated as a result of their sequential transport provide cues that spatially organise collective nest excavation.}, language = {en} } @article{PahlSiZhang2013, author = {Pahl, Mario and Si, Aung and Zhang, Shaowu}, title = {Numerical cognition in bees and other insects}, series = {Frontiers in Comparative Psychology}, journal = {Frontiers in Comparative Psychology}, doi = {10.3389/fpsyg.2013.00162}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-95935}, year = {2013}, abstract = {The ability to perceive the number of objects has been known to exist in vertebrates for a few decades, but recent behavioral investigations have demonstrated that several invertebrate species can also be placed on the continuum of numerical abilities shared with birds, mammals, and reptiles. In this review article, we present the main experimental studies that have examined the ability of insects to use numerical information. These studies have made use of a wide range of methodologies, and for this reason it is striking that a common finding is the inability of the tested animals to discriminate numerical quantities greater than four. Furthermore, the finding that bees can not only transfer learnt numerical discrimination to novel objects, but also to novel numerosities, is strongly suggestive of a true, albeit limited, ability to count. Later in the review, we evaluate the available evidence to narrow down the possible mechanisms that the animals might be using to solve the number-based experimental tasks presented to them. We conclude by suggesting avenues of further research that take into account variables such as the animals' age and experience, as well as complementary cognitive systems such as attention and the time sense.}, subject = {Biene}, language = {en} }