@article{SpringTrendelenbrugScheeretal.1974, author = {Spring, Herbert and Trendelenbrug, Michael F. and Scheer, Ulrich and Franke, Werner W. and Herth, Werner}, title = {Structural and biochemical studies of the primary nucleus of two green algal species, Acetabularia mediterranea and Acetabularia major}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-40600}, year = {1974}, abstract = {Primary (giant) nuclei of the green algae Acetabularia mediterranea and A. major were studied by light and electron microscopy using in situ fixed material as well as manually isolated nuclear components. In addition, cytochemical reactions of nuclear structures and biochemical determinations of nuclear and cytoplasmic RNA and of genome DNA content were performed. The data obtained and the structures observed are interpreted as demonstralions of transcriptional activities of different gene classes. The most prominent class is the nucleolar cistrons of precursors of ribosomal RNA which occur highly repeated in clusters in the form of regularly alternating intercepts on deoxyribonucleoprotein axes of transcribed rDNA, the fibril-covered matrix units, and the fibril-free "spacer" segments. A description and a classification of the various structural complexes which seem to represent transcriptional activities is given. Quantitative evaluations of these arrangements are presented. The morphology and the dimensions of such structures are compared with the RNA molecular weight determinations and with the corresponding data reported from various animal cell systems. It is suggested that the formation of the giant nucleus is correlated with, and probably due to, an enormous amplification of transcriptionally active rDNA and packing of the extrachromosomal copies into the large nucleolar aggregate bodies.}, subject = {Cytologie}, language = {en} } @article{FrankeZentgrafScheer1973, author = {Franke, Werner W. and Zentgraf, Hanswalter and Scheer, Ulrich}, title = {Membrane linkages at the nuclear envelope}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-40596}, year = {1973}, abstract = {Electron-opaque material is shown in the perinuclear cisternae of various cell types to connect the inner and outer nuclear membrane faces. Similar bridges were observed between the outer nuclear membrane and the outer mitochondrial membrane. The intracisternal bridges of the nuclear envelope appear to be important for the structural stability of the perinuclear cisterna. Stable structural linkage of mitochondria to the outer nuclear membrane might be relevant to the understanding of the characteristic juxtanuclear accumulation of mitochondria and also provide arguments for the discussions of certain biochemical activities found in nuclear and nuclear membrane fractions.}, subject = {Cytologie}, language = {en} } @article{FrankeScheerHerth1973, author = {Franke, Werner W. and Scheer, Ulrich and Herth, Werner}, title = {Cytologie, allgemeine und molekulare Cytologie}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-40547}, year = {1973}, abstract = {No abstract available}, language = {de} } @article{FrankeScheerZentgraf1984, author = {Franke, Werner W. and Scheer, Ulrich and Zentgraf, Hanswalter}, title = {Organization of transcriptionally active and inactive chromatin}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-40588}, year = {1984}, abstract = {No abstract available}, subject = {Deutschland}, language = {en} } @incollection{FrankeScheerSpringetal.1979, author = {Franke, Werner W. and Scheer, Ulrich and Spring, Herbert and Trendelenburg, Michael F. and Zentgraf, Hanswalter}, title = {Organization of nucleolar chromatin}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-39410}, publisher = {Universit{\"a}t W{\"u}rzburg}, year = {1979}, abstract = {No abstract available}, language = {en} } @inproceedings{FrankeZentgrafScheer1978, author = {Franke, Werner W. and Zentgraf, Hanswalter and Scheer, Ulrich}, title = {Supranucleosomal and non-nucleosomal chromatin configurations}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-39447}, year = {1978}, abstract = {A significant contribution to the understanding of chromatin organization was the d iscovery of the nucleosome as a globular repeating unit of the package of DNA (Hewish and Burgoyne, 1973; Woodcock, 1973; Kornberg, 1974; Olins and Olins, 1974; for review see Oudet et al., 1978 a) . In accord with the original definition and in ag reement with most workers in this field of research we identify a nucleosome as a spheric alor slightly oblate gr anular particle 10-13 nm in diameter, containing about 200 base pairs of DNA and two of each of the four his tones H2a, H2b, H3 and H4. It is this structure in which the bulk of the nuclear chroma tin is organized in most eukaryotic cells, with the exception of the dinofl age llates (Rae and Steele, 1977; dinofl agellate DNA, however, c an be packed into nucleosoma l structures in vitro by addition of the appropriate amounts of histones;the same reference). Although it seems clear from the work reported that condensed and transcriptiona lly inactive chroma tin is contained in nucleosomes as the principle for first order p acking of DNA there are two important questions onto which we are focusing in the present study: ( i ) What is the higher order of p a cking present in - and perhaps typical-of - the condensed sta te of chromatin, and (ii) what is the specific form of arrangement of transcriptionally a ctive chromatin?}, language = {en} } @article{FrankeScheerHerth1974, author = {Franke, Werner W. and Scheer, Ulrich and Herth, Werner}, title = {Cytology, general and molecular cytology}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-39499}, year = {1974}, abstract = {The present article had originally been conceived as a review on endomembranes, the plasma membrane, and the major product of membrane-bound activities, the cell wall material. However, limitations of space and the cascading number of pertinent literature articles made it necessary to confine this to one group of membranes and one type of cell wall components. Therefore, we shall begin our survey on the biochemical and cytological aspects of membranes by a review of the class of the pore complex bearing endomembranes, i.e. the nuclear envelope and the annulate lamellae (AL). Next year the membranes of the endoplasmic reticulum and the dictyosomes will be dealt with in conjunction with a discussion of the various intracellular vesicles, the tonoplast and the plasmalemma.}, subject = {Botanik}, language = {en} } @article{FrankeKartenbeckKrienetal.1972, author = {Franke, Werner W. and Kartenbeck, J{\"u}rgen and Krien, S. and VanderWoude, W. J. and Scheer, Ulrich and Morr{\´e}, D. J.}, title = {Inter- and intracisternal elements of the Golgi apparatus: A system of membrane-to-membrane cross-links}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-39514}, year = {1972}, abstract = {Electron opaque cross-bridge structures span the inter- and intracisternal spaces and provide membrane-to-membrane connections between adjacent cisternae of dictyosomes of pollen tubes of Clivia and Lilium. Additionally, the classic intercisternal rods, characteristic of intercisternal regions near the maturing face of dictyosomes, are connected with the adjacent membranes through similar cross-bridge elements. We suggest that these structural links are responsible for maintaining the flattened appearance of the central parts of Golgi apparatus cisternae as well as for the coherence of cisternae within the stack. Observations on other plant (e.g. microsporocytes of Canna) and animal cells (e.g. rodent liver and hepatoma cells, newt spermatocytes) show that such an array of membrane cross-links is a universal feature of Golgi apparatus architecture. The cross-bridges appear as part of the complex "zone of exclusion" which surrounds dictyosomes, entire Golgi apparatus and Golgi apparatus equivalents in a variety of cell types.}, language = {en} } @article{ScheerKartenbeckTrendelenburgetal.1976, author = {Scheer, Ulrich and Kartenbeck, J{\"u}rgen and Trendelenburg, Michael F. and Stadler, Joachim and Franke, Werner W.}, title = {Experimental disintegration of the nuclear envelope: evidence for pore-connecting fibrils}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-39735}, year = {1976}, abstract = {The disintegration of the nuclear envelope has been examined in nuclei and nuclear envelopes isolated from amphibian oocytes and rat liver tissue, using different electron microscope techniques (ultrathin sections and negatively or positively stained spread preparations). Various treatments were studied, including disruption by surface tension forces, very low salt concentrations, and non ionic detergents such as Triton X-lOO and Nonidet P-40. The high local stability of the cylinders of nonmembranous pore complex material is emphasized. As progressive disintegration occurred in the membrane regions, a network of fibrils became apparent which interconnects the pore complexes and is distinguished from the pore complexassociated intranuclear fibrils. This network might correspond to an indistinct lamella, about 15 - 20 nm thick, located at the level of the inner nuclear membrane, which is recognized in thin sections to bridge the interpore distances. With all disintegration treatments a somewhat higher susceptibility of the outer nuclear membrane is notable, but a selective removal does not take place. Final stages of disintegration are generally characterized by the absence of identifiable, membrane- like structures. Analysis of detergent-treated nuclei and nuclear membrane fractions shows almost complete absence of lipid components but retention of significant amount of glycoproteins with a typical endomembrane-type carbohydrate pattern. Various alternative interpretations of these observations are discussed. From the present observations and those of Aaronson and Blobel (1,2), we favor the notion that threadlike intrinsic membrane components are stabilized by their attachment to the pore complexes, and perhaps also to peripheral nuclear structures, and constitute a detergent-resistant, interpore skeleton meshwork.}, language = {en} } @article{FrankeScheer1972, author = {Franke, Werner W. and Scheer, Ulrich}, title = {Structural details of dictyosomal pores}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-32155}, year = {1972}, abstract = {Structural details of the dictyosomal pores in several plant cell types are described from tangential and cross sections of Golgi cisternae. Frequency distributions of the sizes of such Golgi pores are given and compared with the corresponding values of nuclear pores in the same cells. Golgi pore inner diameters are less homogeneously distributed and can be as small as 100 A or less. They are not simply cisterna I holes, but are often associated with centrally located electron dense granules or rods and with inner pore filaments. This organization, which is very common in dictyosomal pores in plant and animal cells, has some similarities with the structural architecture of nuclear envelope and annulate lamellar pore complexes. The particulate material associated with the dictyosomal pores shows spatial and structural relationship to cytoplasmic ribosomes. Possible modes of Golgi pore formation and some consequences of these observations for interpretation of nuclear pore structures are discussed.}, language = {en} }