@article{CorneliusLeingaertnerHoissetal.2013, author = {Cornelius, Christine and Leing{\"a}rtner, Annette and Hoiss, Bernhard and Krauss, Jochen and Steffan-Dewenter, Ingolf and Menzel, Annette}, title = {Phenological response of grassland species to manipulative snowmelt and drought along an altitudinal gradient}, series = {Journal of Experimental Botany}, volume = {64}, journal = {Journal of Experimental Botany}, number = {1}, doi = {10.1093/jxb/ers321}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-126888}, pages = {241-251}, year = {2013}, abstract = {Plant communities in the European Alps are assumed to be highly affected by climate change, as the temperature rise in this region is above the global average. It is predicted that higher temperatures will lead to advanced snowmelt dates and that the number of extreme weather events will increase. The aims of this study were to determine the impacts of extreme climatic events on flower phenology and to assess whether those impacts differed between lower and higher altitudes. In 2010, an experiment simulating advanced and delayed snowmelt as well as a drought event was conducted along an altitudinal transect approximately every 250 m (600-2000 m above sea level) in the Berchtesgaden National Park, Germany. The study showed that flower phenology was strongly affected by altitude; however, there were few effects of the manipulative treatments on flowering. The effects of advanced snowmelt were significantly greater at higher than at lower sites, but no significant difference was found between both altitudinal bands for the other treatments. The response of flower phenology to temperature declined through the season and the length of flowering duration was not significantly influenced by treatments. The stronger effect of advanced snowmelt at higher altitudes may be a response to differences in treatment intensity across the gradient. Consequently, shifts in the date of snowmelt due to global warming may affect species more at higher than at lower altitudes, as changes may be more pronounced at higher altitudes. These data indicate a rather low risk of drought events on flowering phenology in the Bavarian Alps.}, language = {en} } @article{CorneliusLeingaertnerHoissetal.2012, author = {Cornelius, C. and Leing{\"a}rtner, A. and Hoiss, B. and Krauss, J. and Steffan-Dewenter, I. and Menzel, A.}, title = {Phenological response of grassland species to manipulative snowmelt and drought along an altitudinal gradient}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-77969}, year = {2012}, abstract = {Plant communities in the European Alps are assumed to be highly affected by climate change since temperature rise in this region is above the global average. It is predicted that higher temperatures will lead to advanced snowmelt dates and that the number of extreme weather events will increase. The aims of this study were to determine the impacts of extreme climatic events on flower phenology and to assess whether those impacts differed between lower and higher altitudes. In 2010 an experiment simulating advanced and delayed snowmelt as well as drought event was conducted along an altitudinal transect ca. every 250m (600-2000 m a.s.l.) in the Berchtesgaden National Park, Germany. The study showed that flower phenology is strongly affected by altitude; however there were few effects of the manipulative treatments on flowering. The effects of advanced snowmelt were significantly greater at higher than at lower sites, but no significant difference was found between both altitudinal bands for the other treatments. The response of flower phenology to temperature declined through the season and the length of flowering duration was not significantly influenced by treatments. The stronger effect of advanced snowmelt at higher altitudes might be a response to differences in treatment intensity across the gradient. Consequently, shifts in the date of snowmelt due to global warming may affect species more at higher than at lower altitudes since changes may be more pronounced at higher altitudes. Our data indicate a rather low risk of drought events on flowering phenology in the Bavarian Alps.}, subject = {Biologie}, language = {en} } @phdthesis{Schwenkert2005, author = {Schwenkert, Isabell}, title = {Phenotypic characterization of hangover at the neuromuscular junction}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-14977}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2005}, abstract = {Ethanoltoleranz beruht vermutlich auf Ver{\"a}nderung in synaptischer Plastizit{\"a}t; da die Mechanismen, die zu dieser Anpassung der Synapsen f{\"u}hren, in hang-Mutanten offensichtlich defekt sind, war es Ziel dieser Arbeit zu erkl{\"a}ren, wie HANG zu synaptischer Plastizit{\"a}t beitr{\"a}gt. In diesem Zusammenhang war es besonders wichtig herauszufinden, in welchem neuronalen Prozeß HANG eine Rolle spielt. Antik{\"o}rperfarbungen gegen HANG zeigten, da das Protein in allen neuronalen Zellkernen larvaler und adulter Gehirne vorhanden ist. Gehirne der hangAE10 Mutante zeigen keine F{\"a}rbung, was best{\"a}tigt, da diese Tiere Nullmutanten f{\"u}r HANG sind. Eine genauere Analyse der Verteilung von HANG im Zellkern ergab, daß HANG in einem punktartigen Muster an bestimmten Stellen im Kern angereichert ist; diese HANG-Aggregate sind an der Innenseite der Kernmembran lokalisiert und colokalisieren nicht mit dem Chromatin. Auf der Basis dieser Ergebnissen wurde postuliert, daß HANG vermutlich an der Stabilisierung, Prozessierung oder dem Export von mRNAs beteiligt ist. Da synaptische Plastizit{\"a}t gut an den einzelnen Neuronen der neuromuskul{\"a}ren Synapse von Drosophila-Larven studiert werden kann, wurde die Morphologie der Motorneurone dritter Larven am Muskelpaar 6/7 des Segments A4 untersucht. Diese Untersuchungen zeigten, da Boutonanzahl und Axonl{\"a}nge in hangAE10-Larven um 40 \% erh{\"o}ht sind. Außerdem zeigen einige Boutons der hang-Mutanten eine abnormale, sanduhrf{\"o}rmige Form, was darauf hinweist, daß sie nach Initiation der Bouton-Teilung m{\"o}glicherweise in einem halb-separierten Zustand geblieben sind. Die Zunahme an Boutons in den Mutanten ist im wesentlichen auf eine Zunahme der Anzahl der Typ Ib-Boutons zur{\"u}ckzuf{\"u}hren. Die Analyse der Verteilung verschiedener synaptischer Marker in hangover-Mutanten ergab keine Hinweise auf Abnormalit{\"a}ten im Zytoskelett oder in der Ausbildung der pr{\"a}-und postsynaptischen Strukturen. Des weiteren ist die Anzahl der aktiven Zonen relativ zur Boutonoberfl{\"a}che nicht ver{\"a}ndert; da hang-Mutanten aber mehr synaptische Boutons pro synaptischem Terminal besitzen, kann man insgesamt von einer Zunahme der Anzahl der aktiven Zonen ausgehen. Die pr{\"a}synaptische Expression von HANG in den Mutanten rettet die erh{\"o}hte Boutonanzahl und die verl{\"a}ngerten Axone, was ebenfalls beweist, daß die beobachteten synaptischen Defekte auf das Fehlen von HANG und nicht auf Sekund{\"a}rmutationen zur{\"u}ckzuf{\"u}hren sind. Eine postsynaptische Expression der hangover cDNA in den Mutanten dagegen rettet den Ph{\"a}notyp nicht. Die Anzahl der synaptischen Boutons wird unter anderem durch cAMP-Levels bestimmt, welche somit synaptische Plastizit{\"a}t regeln. Da hang-Mutanten eine erh{\"o}hte Boutonanzahl aufweisen, f{\"u}hrte dies zu der Spekulation, daß der Ph{\"a}notyp dieser Mutanten m{\"o}glicherweise auf ver{\"a}nderte cAMPlevels zur{\"u}ckzuf{\"u}hren ist. Um dies zu {\"u}berpr{\"u}fen, wurde die Morphologie der neuromuskul{\"a}ren Synapsen von hangAE10-Larven mit denen von dnc1 verglichen, welche Defekte in der cAMP-Kaskade aufweisen. Einige Aspekte des Ph{\"a}notyps (z. B. die Zunahme der Boutonanzahl und das Verhaltnis von aktiven Zonen pro Boutonfl{\"a}che) sind sehr ¨ahnlich; jedoch unterscheiden sich die beiden Mutanten in anderen morphologischen Aspekten. Die Expression eines UAS-dnc-Transgens in hangover-Mutanten modifizierte den hang-Ph{\"a}notyp ebenfalls nicht. Auf der Basis der Ergebnisse dieser Arbeit wurde ein Modell f{\"u}r die Funktion von HANG erstellt, nach dem dieses Protein vermutlich am Isoform-spezifischen Spleißen bestimmter Transkripte beteiligt ist, deren Produkte f{\"u}r die synaptische Plastizit{\"a}t an der neuromuskul{\"a}ren Synapse ben{\"o}tigt werden.}, subject = {Taufliege}, language = {en} } @inproceedings{SchartlSchartlAnders1981, author = {Schartl, A. and Schartl, Manfred and Anders, F.}, title = {Phenotypic conversion of malignant melanoma to benign melanoma and vice versa in Xiphophorus}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-86662}, year = {1981}, abstract = {No abstract available.}, subject = {Schwertk{\"a}rpfling}, language = {en} } @article{VieraElMerahbiNieswandtetal.2016, author = {Viera, Jonathan Trujillo and El-Merahbi, Rabih and Nieswandt, Bernhard and Stegner, David and Sumara, Grzegorz}, title = {Phospholipases D1 and D2 Suppress Appetite and Protect against Overweight}, series = {PLoS ONE}, volume = {11}, journal = {PLoS ONE}, number = {6}, doi = {10.1371/journal.pone.0157607}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-179729}, year = {2016}, abstract = {Obesity is a major risk factor predisposing to the development of peripheral insulin resistance and type 2 diabetes (T2D). Elevated food intake and/or decreased energy expenditure promotes body weight gain and acquisition of adipose tissue. Number of studies implicated phospholipase D (PLD) enzymes and their product, phosphatidic acid (PA), in regulation of signaling cascades controlling energy intake, energy dissipation and metabolic homeostasis. However, the impact of PLD enzymes on regulation of metabolism has not been directly determined so far. In this study we utilized mice deficient for two major PLD isoforms, PLD1 and PLD2, to assess the impact of these enzymes on regulation of metabolic homeostasis. We showed that mice lacking PLD1 or PLD2 consume more food than corresponding control animals. Moreover, mice deficient for PLD2, but not PLD1, present reduced energy expenditure. In addition, deletion of either of the PLD enzymes resulted in development of elevated body weight and increased adipose tissue content in aged animals. Consistent with the fact that elevated content of adipose tissue predisposes to the development of hyperlipidemia and insulin resistance, characteristic for the pre-diabetic state, we observed that Pld1\(^{-/-}\) and Pld2\(^{-/-}\) mice present elevated free fatty acids (FFA) levels and are insulin as well as glucose intolerant. In conclusion, our data suggest that deficiency of PLD1 or PLD2 activity promotes development of overweight and diabetes.}, language = {en} } @article{KoenigKraussKelleretal.2022, author = {K{\"o}nig, Sebastian and Krauss, Jochen and Keller, Alexander and Bofinger, Lukas and Steffan-Dewenter, Ingolf}, title = {Phylogenetic relatedness of food plants reveals highest insect herbivore specialization at intermediate temperatures along a broad climatic gradient}, series = {Global Change Biology}, volume = {28}, journal = {Global Change Biology}, number = {13}, doi = {10.1111/gcb.16199}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-276441}, pages = {4027 -- 4040}, year = {2022}, abstract = {The composition and richness of herbivore and plant assemblages change along climatic gradients, but knowledge about associated shifts in specialization is scarce and lacks controlling for the abundance and phylogeny of interaction partners. Thus, we aimed to test whether the specialization of phytophagous insects in insect-plant interaction networks decreases toward cold habitats as predicted by the 'altitude niche-breadth hypothesis' to forecast possible consequences of interaction rewiring under climate change. We used a non-invasive, standardized metabarcoding approach to reconstruct dietary relationships of Orthoptera species as a major insect herbivore taxon along a broad temperature gradient (~12°C) in Southern Germany. Based on Orthoptera surveys, feeding observations, collection of fecal pellets from >3,000 individuals of 54 species, and parallel vegetation surveys on 41 grassland sites, we quantified plant resource availability and its use by herbivores. Herbivore assemblages were richer in species and individuals at sites with high summer temperatures, while plant richness peaked at intermediate temperatures. Corresponding interaction networks were most specialized in warm habitats. Considering phylogenetic relationships of plant resources, however, the specialization pattern was not linear but peaked at intermediate temperatures, mediated by herbivores feeding on a narrow range of phylogenetically related resources. Our study provides empirical evidence of resource specialization of insect herbivores along a climatic gradient, demonstrating that resource phylogeny, availability, and temperature interactively shape the specialization of herbivore assemblages. Instead of low specialization levels only in cold, harsh habitats, our results suggest increased generalist feeding due to intraspecific changes and compositional differences at both ends of the microclimatic gradient. We conclude that this nonlinear change of phylogeny-based resource specialization questions predictions derived from the 'altitude-niche breadth hypothesis' and highlights the currently limited understanding of how plant-herbivore interactions will change under future climatic conditions.}, language = {en} } @phdthesis{Hafen2015, author = {Hafen, Bettina}, title = {Physical contact between mesenchymal stem cells and endothelial precursors induces distinct signatures with relevance to tissue regeneration and engineering}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-119417}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {The goal of the project VascuBone is to develop a tool box for bone regeneration, which on one hand fulfills basic requirements (e.g. biocompatibility, properties of the surface, strength of the biomaterials) and on the other hand is freely combinable with what is needed in the respective patient's situation. The tool box will include a variation of biocompatible biomaterials and cell types, FDA-approved growth factors, material modification technologies, simulation and analytical tools like molecular imaging-based in vivo diagnostics, which can be combined for the specific medical need. This tool box will be used to develop translational approaches for regenerative therapies of different types of bone defects. This project receives funding from the European Union's Seventh Framework Program (VascuBone 2010). The present study is embedded into this EU project. The intention of this study is to assess the changes of the global gene expression patterns of endothelial progenitor cells (EPCs) and mesenchymal stem cells (MSCs) after direct cell-cell contact as well as the influence of conditioned medium gained from MSCs on EPCs and vice versa. EPCs play an important role in postnatal vasculogenesis. An intact blood vessel system is crucial for all tissues, including bone. Latest findings in the field of bone fracture healing and repair by the use of tissue engineering constructs seeded with MSCs raised the idea of combining MSCs and EPCs to enhance vascularization and therefore support survival of the newly built bone tissue. RNA samples from both experimental set ups were hybridized on Affymetrix GeneChips® HG-U133 Plus 2.0 and analyzed by microarray technology. Bioinformatic analysis was applied to the microarray data and verified by RT-PCR. This study gives detailed information on how EPCs and MSCs communicate with each other and therefore gives insights into the signaling pathways of the musculoskeletal system. These insights will be the base for further functional studies on protein level for the purpose of tissue regeneration. A better understanding of the cell communication of MSCs and EPCs and subsequently the targeting of relevant factors opens a variety of new opportunities, especially in the field of tissue engineering. The second part of the present work was to develop an ELISA (enzyme-linked immunosorbent assay) for a target protein from the lists of differentially expressed genes revealed by the microarray analysis. This project was in cooperation with Immundiagnostik AG, Bensheim, Germany. The development of the ELISA aimed to have an in vitro diagnostic tool to monitor e.g. the quality of cell seeded tissue engineering constructs. The target protein chosen from the lists was klotho. Klotho seemed to be a very promising candidate since it is described in the literature as anti-aging protein. Furthermore, studies with klotho knock-out mice showed that these animals suffered from several age-related diseases e.g. osteoporosis and atherosclerosis. As a co-receptor for FGF23, klotho plays an important role in bone metabolism. The present study will be the first one to show that klotho is up-regulated in EPCs after direct cell-cell contact with MSCs. The development of an assay with a high sensitivity on one hand and the capacity to differentiate between secreted and shedded klotho on the other hand will allow further functional studies of this protein and offers a new opportunity in medical diagnostics especially in the field of metabolic bone disease.}, subject = {Vorl{\"a}uferzelle}, language = {en} } @article{TuChenLimetal.2012, author = {Tu, Xiaolin and Chen, Jianquan and Lim, Joohyun and Karner, Courtney M. and Lee, Seung-Yon and Heisig, Julia and Wiese, Cornelia and Surendran, Kameswaran and Kopan, Raphael and Gessler, Manfred and Long, Fanxin}, title = {Physiological Notch Signaling Maintains Bone Homeostasis via RBPjk and Hey Upstream of NFATc1}, series = {PLoS Genetics}, volume = {8}, journal = {PLoS Genetics}, number = {3}, doi = {10.1371/journal.pgen.1002577}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-133490}, pages = {e1002577}, year = {2012}, abstract = {Notch signaling between neighboring cells controls many cell fate decisions in metazoans both during embryogenesis and in postnatal life. Previously, we uncovered a critical role for physiological Notch signaling in suppressing osteoblast differentiation in vivo. However, the contribution of individual Notch receptors and the downstream signaling mechanism have not been elucidated. Here we report that removal of Notch2, but not Notch1, from the embryonic limb mesenchyme markedly increased trabecular bone mass in adolescent mice. Deletion of the transcription factor RBPjk, a mediator of all canonical Notch signaling, in the mesenchymal progenitors but not the more mature osteoblast-lineage cells, caused a dramatic high-bone-mass phenotype characterized by increased osteoblast numbers, diminished bone marrow mesenchymal progenitor pool, and rapid age-dependent bone loss. Moreover, mice deficient in Hey1 and HeyL, two target genes of Notch-RBPjk signaling, exhibited high bone mass. Interestingly, Hey1 bound to and suppressed the NFATc1 promoter, and RBPjk deletion increased NFATc1 expression in bone. Finally, pharmacological inhibition of NFAT alleviated the high-bone-mass phenotype caused by RBPjk deletion. Thus, Notch-RBPjk signaling functions in part through Hey1-mediated inhibition of NFATc1 to suppress osteoblastogenesis, contributing to bone homeostasis in vivo.}, language = {en} } @article{DuMaYanez‐Serranoetal.2021, author = {Du, Baoguo and Ma, Yuhua and Y{\´a}{\~n}ez-Serrano, Ana Maria and Arab, Leila and Fasbender, Lukas and Alfarraj, Saleh and Albasher, Gadah and Hedrich, Rainer and White, Philip J. and Werner, Christiane and Rennenberg, Heinz}, title = {Physiological responses of date palm (Phoenix dactylifera) seedlings to seawater and flooding}, series = {New Phytologist}, volume = {229}, journal = {New Phytologist}, number = {6}, doi = {10.1111/nph.17123}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-228226}, pages = {3318 -- 3329}, year = {2021}, abstract = {In their natural environment along coast lines, date palms are exposed to seawater inundation and, hence, combined stress by salinity and flooding. To elucidate the consequences of this combined stress on foliar gas exchange and metabolite abundances in leaves and roots, date palm seedlings were exposed to flooding with seawater and its major constituents under controlled conditions. Seawater flooding significantly reduced CO\(_{2}\) assimilation, transpiration and stomatal conductance, but did not affect isoprene emission. A similar effect was observed upon NaCl exposure. By contrast, flooding with distilled water or MgSO\(_{4}\) did not affect CO\(_{2}\)/H\(_{2}\)O gas exchange or stomatal conductance significantly, indicating that neither flooding itself, nor seawater sulfate, contributed greatly to stomatal closure. Seawater exposure increased Na and Cl contents in leaves and roots, but did not affect sulfate contents significantly. Metabolite analyses revealed reduced abundances of foliar compatible solutes, such as sugars and sugar alcohols, whereas nitrogen compounds accumulated in roots. Reduced transpiration upon seawater exposure may contribute to controlling the movement of toxic ions to leaves and, therefore, can be seen as a mechanism to cope with salinity. The present results indicate that date palm seedlings are tolerant towards seawater exposure to some extent, and highly tolerant to flooding.}, language = {en} } @inproceedings{PeterSchartlAndersetal.1985, author = {Peter, R. U. and Schartl, Manfred and Anders, F. and Duncker, H.-R.}, title = {Pigment pattern formation during embryogenesis in Xiphophorus}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-69370}, year = {1985}, abstract = {No abstract available.}, subject = {Schwertk{\"a}rpfling}, language = {en} }