@article{ScharmannThornhamGrafeetal.2013, author = {Scharmann, Mathias and Thornham, Daniel G. and Grafe, T. Ulmar and Federle, Walter}, title = {A Novel Type of Nutritional Ant-Plant Interaction: Ant Partners of Carnivorous Pitcher Plants Prevent Nutrient Export by Dipteran Pitcher Infauna}, series = {PLoS ONE}, volume = {8}, journal = {PLoS ONE}, number = {5}, doi = {10.1371/journal.pone.0063556}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-130952}, pages = {e63556}, year = {2013}, abstract = {Many plants combat herbivore and pathogen attack indirectly by attracting predators of their herbivores. Here we describe a novel type of insect-plant interaction where a carnivorous plant uses such an indirect defence to prevent nutrient loss to kleptoparasites. The ant Camponotus schmitzi is an obligate inhabitant of the carnivorous pitcher plant Nepenthes bicalcarata in Borneo. It has recently been suggested that this ant-plant interaction is a nutritional mutualism, but the detailed mechanisms and the origin of the ant-derived nutrient supply have remained unexplained. We confirm that N. bicalcarata host plant leaves naturally have an elevated \(^{15}N/^{14}N\) stable isotope abundance ratio (\(\delta ^{15}N\)) when colonised by C. schmitzi. This indicates that a higher proportion of the plants' nitrogen is insect-derived when C. schmitzi ants are present (ca. 100\%, vs. 77\% in uncolonised plants) and that more nitrogen is available to them. We demonstrated direct flux of nutrients from the ants to the host plant in a \(^{15}N\) pulse-chase experiment. As C. schmitzi ants only feed on nectar and pitcher contents of their host, the elevated foliar \(\delta ^{15}N\) cannot be explained by classic ant-feeding (myrmecotrophy) but must originate from a higher efficiency of the pitcher traps. We discovered that C. schmitzi ants not only increase the pitchers' capture efficiency by keeping the pitchers' trapping surfaces clean, but they also reduce nutrient loss from the pitchers by predating dipteran pitcher inhabitants (infauna). Consequently, nutrients the pitchers would have otherwise lost via emerging flies become available as ant colony waste. The plants' prey is therefore conserved by the ants. The interaction between C. schmitzi, N. bicalcarata and dipteran pitcher infauna represents a new type of mutualism where animals mitigate the damage by nutrient thieves to a plant.}, language = {en} } @article{KarlDandekar2013, author = {Karl, Stefan and Dandekar, Thomas}, title = {Jimena: Efficient computing and system state identification for genetic regulatory networks}, series = {BMC Bioinformatics}, volume = {14}, journal = {BMC Bioinformatics}, doi = {10.1186/1471-2105-14-306}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-128671}, year = {2013}, abstract = {Background: Boolean networks capture switching behavior of many naturally occurring regulatory networks. For semi-quantitative modeling, interpolation between ON and OFF states is necessary. The high degree polynomial interpolation of Boolean genetic regulatory networks (GRNs) in cellular processes such as apoptosis or proliferation allows for the modeling of a wider range of node interactions than continuous activator-inhibitor models, but suffers from scaling problems for networks which contain nodes with more than ~10 inputs. Many GRNs from literature or new gene expression experiments exceed those limitations and a new approach was developed. Results: (i) As a part of our new GRN simulation framework Jimena we introduce and setup Boolean-tree-based data structures; (ii) corresponding algorithms greatly expedite the calculation of the polynomial interpolation in almost all cases, thereby expanding the range of networks which can be simulated by this model in reasonable time. (iii) Stable states for discrete models are efficiently counted and identified using binary decision diagrams. As application example, we show how system states can now be sampled efficiently in small up to large scale hormone disease networks (Arabidopsis thaliana development and immunity, pathogen Pseudomonas syringae and modulation by cytokinins and plant hormones). Conclusions: Jimena simulates currently available GRNs about 10-100 times faster than the previous implementation of the polynomial interpolation model and even greater gains are achieved for large scale-free networks. This speed-up also facilitates a much more thorough sampling of continuous state spaces which may lead to the identification of new stable states. Mutants of large networks can be constructed and analyzed very quickly enabling new insights into network robustness and behavior.}, language = {en} } @article{DegenkolbeKoenigZimmeretal.2013, author = {Degenkolbe, Elisa and K{\"o}nig, Jana and Zimmer, Julia and Walther, Maria and Reißner, Carsten and Nickel, Joachim and Pl{\"o}ger, Frank and Raspopovic, Jelena and Sharpe, James and Dathe, Katharina and Hecht, Jacqueline T. and Mundlos, Stefan and Doelken, Sandra C. and Seemann, Petra}, title = {A GDF5 Point Mutation Strikes Twice - Causing BDA1 and SYNS2}, series = {PLOS Genetics}, volume = {9}, journal = {PLOS Genetics}, number = {10}, issn = {1553-7404}, doi = {10.1371/journal.pgen.1003846}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-127556}, pages = {e1003846}, year = {2013}, abstract = {Growth and Differentiation Factor 5 (GDF5) is a secreted growth factor that belongs to the Bone Morphogenetic Protein (BMP) family and plays a pivotal role during limb development. GDF5 is a susceptibility gene for osteoarthritis (OA) and mutations in GDF5 are associated with a wide variety of skeletal malformations ranging from complex syndromes such as acromesomelic chondrodysplasias to isolated forms of brachydactylies or multiple synostoses syndrome 2 (SYNS2). Here, we report on a family with an autosomal dominant inherited combination of SYNS2 and additional brachydactyly type A1 (BDA1) caused by a single point mutation in GDF5 (p.W414R). Functional studies, including chondrogenesis assays with primary mesenchymal cells, luciferase reporter gene assays and Surface Plasmon Resonance analysis, of the GDF5 W-414R variant in comparison to other GDF5 mutations associated with isolated BDA1 (p.R399C) or SYNS2 (p.E491K) revealed a dual pathomechanism characterized by a gain-and loss-of-function at the same time. On the one hand insensitivity to the main GDF5 antagonist NOGGIN (NOG) leads to a GDF5 gain of function and subsequent SYNS2 phenotype. Whereas on the other hand, a reduced signaling activity, specifically via the BMP receptor type IA (BMPR1A), is likely responsible for the BDA1 phenotype. These results demonstrate that one mutation in the overlapping interface of antagonist and receptor binding site in GDF5 can lead to a GDF5 variant with pathophysiological relevance for both, BDA1 and SYNS2 development. Consequently, our study assembles another part of the molecular puzzle of how loss and gain of function mutations in GDF5 affect bone development in hands and feet resulting in specific types of brachydactyly and SYNS2. These novel insights into the biology of GDF5 might also provide further clues on the pathophysiology of OA.}, language = {en} } @article{MeucheBrusaLinsenmairetal.2013, author = {Meuche, Ivonne and Brusa, Oscar and Linsenmair, K. Eduard and Keller, Alexander and Pr{\"o}hl, Heike}, title = {Only distance matters - non-choosy females in a poison frog population}, series = {Frontiers in Zoology}, volume = {10}, journal = {Frontiers in Zoology}, number = {29}, issn = {1742-9994}, doi = {10.1186/1742-9994-10-29}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-122617}, year = {2013}, abstract = {Background: Females have often been shown to exhibit preferences for certain male traits. However, little is known about behavioural rules females use when searching for mates in their natural habitat. We investigated mate sampling tactics and related costs in the territorial strawberry poison frog (Oophaga pumilio) possessing a lek-like mating system, where both sequential and simultaneous sampling might occur. We continuously monitored the sampling pattern and behaviour of females during the complete period between two successive matings. Results: We found no evidence that females compared males by visiting them. Instead females mated with the closest calling male irrespective of his acoustic and physical traits, and territory size. Playback experiments in the natural home ranges of receptive females revealed that tested females preferred the nearest speaker and did not discriminate between low and high call rates or dominant frequencies. Conclusions: Our results suggest that females of O. pumilio prefer the closest calling male in the studied population. We hypothesize that the sampling tactic in this population is affected by 1) a strongly female biased sex ratio and 2) a low variance in traits of available males due to strong male-male competition, preventing low quality males from defending a territory and mating.}, language = {en} } @article{MenzelBluethgenTolaschetal.2013, author = {Menzel, Florian and Bl{\"u}thgen, Nico and Tolasch, Till and Conrad, J{\"u}rgen and Beifuss, Uwe and Beuerle, Till and Schmitt, Thomas}, title = {Crematoenones - a novel substance class exhibited by ants functions as appeasement signal}, series = {Frontiers in Zoology}, volume = {10}, journal = {Frontiers in Zoology}, number = {32}, issn = {1742-9994}, doi = {10.1186/1742-9994-10-32}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-122595}, year = {2013}, abstract = {Background: Parasitic, commensalistic, and mutualistic guests in social insect colonies often circumvent their hosts' nestmate recognition system to be accepted. These tolerance strategies include chemical mimicry and chemical insignificance. While tolerance strategies have been studied intensively in social parasites, little is known about these mechanisms in non-parasitic interactions. Here, we describe a strategy used in a parabiotic association, i.e. two mutualistic ant species that regularly share a common nest although they have overlapping food niches. One of them, Crematogaster modiglianii, produces an array of cuticular compounds which represent a substance class undescribed in nature so far. They occur in high abundances, which suggests an important function in the ant's association with its partner Camponotus rufifemur. Results: We elucidated the structure of one of the main compounds from cuticular extracts using gas chromatography, mass spectrometry, chemical derivatizations and nuclear magnetic resonance spectroscopy (NMR). The compound consists of two fused six-membered rings with two alkyl groups, one of which carries a keto functionality. To our knowledge, this is the first report on the identification of this substance class in nature. We suggest naming the compound crematoenone. In behavioural assays, crematoenones reduced interspecific aggression. Camponotus showed less aggression to allospecific cuticular hydrocarbons when combined with crematoenones. Thus, they function as appeasement substances. However, although the crematoenone composition was highly colony-specific, interspecific recognition was mediated by cuticular hydrocarbons, and not by crematoenones. Conclusions: Crematenones enable Crematogaster to evade Camponotus aggression, and thus reduce potential costs from competition with Camponotus. Hence, they seem to be a key factor in the parabiosis, and help Crematogaster to gain a net benefit from the association and thus maintain a mutualistic association over evolutionary time. To our knowledge, putative appeasement substances have been reported only once so far, and never between non-parasitic species. Since most organisms associated with social insects need to overcome their nestmate recognition system, we hypothesize that appeasement substances might play an important role in the evolution and maintenance of other mutualistic associations as well, by allowing organisms to reduce costs from antagonistic behaviour of other species.}, language = {en} } @article{NgwaScheuermayerMairetal.2013, author = {Ngwa, Che Julius and Scheuermayer, Matthias and Mair, Gunnar Rudolf and Kern, Selina and Br{\"u}gl, Thomas and Wirth, Christine Clara and Aminake, Makoah Nigel and Wiesner, Jochen and Fischer, Rainer and Vilcinskas, Andreas and Pradel, Gabriele}, title = {Changes in the transcriptome of the malaria parasite Plasmodium falciparum during the initial phase of transmission from the human to the mosquito}, series = {BMC Genomics}, volume = {14}, journal = {BMC Genomics}, number = {256}, issn = {1471-2164}, doi = {10.1186/1471-2164-14-256}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-121905}, year = {2013}, abstract = {Background: The transmission of the malaria parasite Plasmodium falciparum from the human to the mosquito is mediated by dormant sexual precursor cells, the gametocytes, which become activated in the mosquito midgut. Because gametocytes are the only parasite stages able to establish an infection in the mosquito, they play a crucial role in spreading the tropical disease. The human-to-mosquito transmission triggers important molecular changes in the gametocytes, which initiate gametogenesis and prepare the parasite for life-cycle progression in the insect vector. Results: To better understand gene regulations during the initial phase of malaria parasite transmission, we focused on the transcriptome changes that occur within the first half hour of parasite development in the mosquito. Comparison of mRNA levels of P. falciparum gametocytes before and 30 min following activation using suppression subtractive hybridization (SSH) identified 126 genes, which changed in expression during gametogenesis. Among these, 17.5\% had putative functions in signaling, 14.3\% were assigned to cell cycle and gene expression, 8.7\% were linked to the cytoskeleton or inner membrane complex, 7.9\% were involved in proteostasis and 6.4\% in metabolism, 12.7\% were cell surface-associated proteins, 11.9\% were assigned to other functions, and 20.6\% represented genes of unknown function. For 40\% of the identified genes there has as yet not been any protein evidence. For a subset of 27 genes, transcript changes during gametogenesis were studied in detail by real-time RT-PCR. Of these, 22 genes were expressed in gametocytes, and for 15 genes transcript expression in gametocytes was increased compared to asexual blood stage parasites. Transcript levels of seven genes were particularly high in activated gametocytes, pointing at functions downstream of gametocyte transmission to the mosquito. For selected genes, a regulated expression during gametogenesis was confirmed on the protein level, using quantitative confocal microscopy. Conclusions: The obtained transcriptome data demonstrate the regulations of gene expression immediately following malaria parasite transmission to the mosquito. Our findings support the identification of proteins important for sexual reproduction and further development of the mosquito midgut stages and provide insights into the genetic basis of the rapid adaption of Plasmodium to the insect vector.}, language = {en} } @article{KangSchartlWalteretal.2013, author = {Kang, Ji Hyoun and Schartl, Manfred and Walter, Ronald B. and Meyer, Axel}, title = {Comprehensive phylogenetic analysis of all species of swordtails and platies (Pisces: Genus Xiphophorus) uncovers a hybrid origin of a swordtail fish, Xiphophorus monticolus, and demonstrates that the sexually selected sword originated in the ancestral lineage of the genus, but was lost again secondarily}, series = {BMC Evolutionary Biology}, volume = {13}, journal = {BMC Evolutionary Biology}, number = {25}, issn = {1471-2148}, doi = {10.1186/1471-2148-13-25}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-121853}, year = {2013}, abstract = {Background: Males in some species of the genus Xiphophorus, small freshwater fishes from Meso-America, have an extended caudal fin, or sword - hence their common name "swordtails". Longer swords are preferred by females from both sworded and - surprisingly also, non-sworded (platyfish) species that belong to the same genus. Swordtails have been studied widely as models in research on sexual selection. Specifically, the pre-existing bias hypothesis was interpreted to best explain the observed bias of females in presumed ancestral lineages of swordless species that show a preference for assumed derived males with swords over their conspecific swordless males. However, many of the phylogenetic relationships within this genus still remained unresolved. Here we construct a comprehensive molecular phylogeny of all 26 known Xiphophorus species, including the four recently described species (X. kallmani, X. mayae, X. mixei and X. monticolus). We use two mitochondrial and six new nuclear markers in an effort to increase the understanding of the evolutionary relationships among the species in this genus. Based on the phylogeny, the evolutionary history and character state evolution of the sword was reconstructed and found to have originated in the common ancestral lineage of the genus Xiphophorus and that it was lost again secondarily. Results: We estimated the evolutionary relationships among all known species of the genus Xiphophorus based on the largest set of DNA markers so far. The phylogeny indicates that one of the newly described swordtail species, Xiphophorus monticolus, is likely to have arisen through hybridization since it is placed with the southern platyfish in the mitochondrial phylogeny, but with the southern swordtails in the nuclear phylogeny. Such discordance between these two types of markers is a strong indication for a hybrid origin. Additionally, by using a maximum likelihood approach the possession of the sexually selected sword trait is shown to be the most likely ancestral state for the genus Xiphophorus. Further, we provide a well supported estimation of the phylogenetic relationships between the previously unresolved northern swordtail groups. Conclusions: This comprehensive molecular phylogeny of the entire genus Xiphophorus provides evidence that a second swordtail species, X. monticolus, arose through hybridization. Previously, we demonstrated that X. clemenciae, another southern swordtail species, arose via hybridization. These findings highlight the potential key role of hybridization in the evolution of this genus and suggest the need for further investigations into how hybridization contributes to speciation more generally.}, language = {en} } @article{RybalkaWolfAndersenetal.2013, author = {Rybalka, Nataliya and Wolf, Matthias and Andersen, Robert and Friedl, Thomas}, title = {Congruence of chloroplast- and nuclear-encoded DNA sequence variations used to assess species boundaries in the soil microalga Heterococcus (Stramenopiles, Xanthophyceae)}, series = {BMC Evolutionary Biology}, volume = {13}, journal = {BMC Evolutionary Biology}, number = {39}, issn = {1471-2148}, doi = {10.1186/1471-2148-13-39}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-121848}, year = {2013}, abstract = {Background: Heterococcus is a microalgal genus of Xanthophyceae (Stramenopiles) that is common and widespread in soils, especially from cold regions. Species are characterized by extensively branched filaments produced when grown on agarized culture medium. Despite the large number of species described exclusively using light microscopic morphology, the assessment of species diversity is hampered by extensive morphological plasticity. Results: Two independent types of molecular data, the chloroplast-encoded psbA/rbcL spacer complemented by rbcL gene and the internal transcribed spacer 2 of the nuclear rDNA cistron (ITS2), congruently recovered a robust phylogenetic structure. With ITS2 considerable sequence and secondary structure divergence existed among the eight species, but a combined sequence and secondary structure phylogenetic analysis confined to helix II of ITS2 corroborated relationships as inferred from the rbcL gene phylogeny. Intra-genomic divergence of ITS2 sequences was revealed in many strains. The 'monophyletic species concept', appropriate for microalgae without known sexual reproduction, revealed eight different species. Species boundaries established using the molecular-based monophyletic species concept were more conservative than the traditional morphological species concept. Within a species, almost identical chloroplast marker sequences (genotypes) were repeatedly recovered from strains of different origins. At least two species had widespread geographical distributions; however, within a given species, genotypes recovered from Antarctic strains were distinct from those in temperate habitats. Furthermore, the sequence diversity may correspond to adaptation to different types of habitats or climates. Conclusions: We established a method and a reference data base for the unambiguous identification of species of the common soil microalgal genus Heterococcus which uses DNA sequence variation in markers from plastid and nuclear genomes. The molecular data were more reliable and more conservative than morphological data.}, language = {en} } @article{DietzHasseFerrarisetal.2013, author = {Dietz, Mariana S. and Hasse, Daniel and Ferraris, Davide M. and G{\"o}hler, Antonia and Niemann, Hartmut H. and Heilemann, Mike}, title = {Single-molecule photobleaching reveals increased MET receptor dimerization upon ligand binding in intact cells}, series = {BMC Biophysics}, volume = {6}, journal = {BMC Biophysics}, number = {6}, issn = {2046-1682}, doi = {10.1186/2046-1682-6-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-121835}, year = {2013}, abstract = {Background: The human receptor tyrosine kinase MET and its ligand hepatocyte growth factor/scatter factor are essential during embryonic development and play an important role during cancer metastasis and tissue regeneration. In addition, it was found that MET is also relevant for infectious diseases and is the target of different bacteria, amongst them Listeria monocytogenes that induces bacterial uptake through the surface protein internalin B. Binding of ligand to the MET receptor is proposed to lead to receptor dimerization. However, it is also discussed whether preformed MET dimers exist on the cell membrane. Results: To address these issues we used single-molecule fluorescence microscopy techniques. Our photobleaching experiments show that MET exists in dimers on the membrane of cells in the absence of ligand and that the proportion of MET dimers increases significantly upon ligand binding. Conclusions: Our results indicate that partially preformed MET dimers may play a role in ligand binding or MET signaling. The addition of the bacterial ligand internalin B leads to an increase of MET dimers which is in agreement with the model of ligand-induced dimerization of receptor tyrosine kinases.}, language = {en} } @article{BogdanSchultzGrosshans2013, author = {Bogdan, Sven and Schultz, J{\"o}rg and Grosshans, J{\"o}rg}, title = {Formin' cellular structures: Physiological roles of Diaphanous (Dia) in actin dynamics}, series = {Communicative \& Integrative Biology}, volume = {6}, journal = {Communicative \& Integrative Biology}, number = {e27634}, doi = {10.4161/cib.27634}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-121305}, year = {2013}, abstract = {Members of the Diaphanous (Dia) protein family are key regulators of fundamental actin driven cellular processes, which are conserved from yeast to humans. Researchers have uncovered diverse physiological roles in cell morphology, cell motility, cell polarity, and cell division, which are involved in shaping cells into tissues and organs. The identification of numerous binding partners led to substantial progress in our understanding of the differential functions of Dia proteins. Genetic approaches and new microscopy techniques allow important new insights into their localization, activity, and molecular principles of regulation.}, language = {en} }