@phdthesis{Adler2021, author = {Adler, Florian Rudolf}, title = {Electronic Correlations in Two-dimensional Triangular Adatom Lattices}, doi = {10.25972/OPUS-24175}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-241758}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Two-dimensional triangular lattices of group IV adatoms on semiconductor substrates provide a rich playground for the investigation of Mott-Hubbard physics. The possibility to combine various types of adatoms and substrates makes members of this material class versatile model systems to study the influence of correlation strength, band filling and spin-orbit coupling on the electronic structure - both experimentally and with dedicated many-body calculation techniques. The latter predict exotic ground states such as chiral superconductivity or spin liquid behavior for these frustrated lattices, however, experimental confirmation is still lacking. In this work, three different systems, namely the \(\alpha\)-phases of Sn/SiC(0001), Pb/Si(111), and potassium-doped Sn/Si(111) are investigated with scanning tunneling microscopy and photoemission spectroscopy in this regard. The results are potentially relevant for spintronic applications or quantum computing. For the novel group IV triangular lattice Sn/SiC(0001), a combined experimental and theoretical study reveals that the system features surprisingly strong electronic correlations because they are boosted by the substrate through its partly ionic character and weak screening capabilities. Interestingly, the spectral function, measured for the first time via angle-resolved photoemission, does not show any additional superstructure beyond the intrinsic \(\sqrt{3} \times \sqrt{3} R30^{\circ}\) reconstruction, thereby raising curiosity regarding the ground-state spin pattern. For Pb/Si(111), preceding studies have noted a phase transition of the surface reconstruction from \(\sqrt{3} \times \sqrt{3} R30^{\circ}\) to \(3 \times 3\) at 86 K. In this thesis, investigations of the low-temperature phase with high-resolution scanning tunneling microscopy and spectroscopy unveil the formation of a charge-ordered ground state. It is disentangled from a concomitant structural rearrangement which is found to be 2-up/1-down, in contrast to previous predictions. Applying an extended variational cluster approach, a phase diagram of local and nonlocal Coulomb interactions is mapped out. Based on a comparison of theoretical spectral functions with scattering vectors found via quasiparticle interference, Pb/Si(111) is placed in said phase diagram and electronic correlations are found to be the driving force of the charge-ordered state. In order to realize a doped Mott insulator in a frustrated geometry, potassium was evaporated onto the well-known correlated Sn/Si(111) system. Instead of the expected insulator-to-metal transition, scanning tunneling spectroscopy data indicates that the electronic structure of Sn/Si(111) is only affected locally around potassium atoms while a metallization is suppressed. The potassium atoms were found to be adsorbed on empty \(T_4\) sites of the substrate which eventually leads to the formation of two types of K-Sn alloys with a relative potassium content of 1/3 and 1/2, respectively. Complementary measurements of the spectral function via angle-resolved photoemission reveal that the lower Hubbard band of Sn/Si(111) gradually changes its shape upon potassium deposition. Once the tin and potassium portion on the surface are equal, this evolution is complete and the system can be described as a band insulator without the need to include Coulomb interactions.}, subject = {Rastertunnelmikroskopie}, language = {en} } @phdthesis{Martin2021, author = {Martin, Konstantin}, title = {Current-induced Magnetization Switching by a generated Spin-Orbit Torque in the 3D Topological Insulator Material HgTe}, doi = {10.25972/OPUS-24049}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-240490}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Magnetic random access memory (MRAM) technology aims to replace dynamic RAM (DRAM) due to its significantly lower power consumption and non-volatility [Dong08]. During the last couple of years the commercial focus was set on spin-transfer torque MRAM (STT-MRAM) systems, where a current is pushed through a ferromagnetic (FM) free layer and a reference layer which are separated by an insulator. The free layer can be set to parallel or anti-parallel depending on the current direction [Kim11]. Unfortunately these currents have to be quite high which could lead to damages of the tunnel barrier of the magnetic tunnel junction resulting in higher power consumption as well as reliability issues. At this point a new effect, where the current is passed below the ferromagnetic layer stack, can be exploited to change the direction of the free layer magnetization. The effect is known as spin-orbit torque (SOT) and describes the transfer of angular momentum onto an adjacent magnetization either by the spin Hall effect (SHE) or inverse spin galvanic effect (iSGE) [Manchon19]. The latter describes a spin accumulation due to a current. This is similar to the process of spin accumulation in TIs, where a current corresponds to an effective spin due to spin-momentum locking [Qi11]. Thus TIs exhibit a high current-to-spin conversion rate, which makes them a promising material system for SOT experiments. Among all TIs it is HgTe, which can be reliably grown as an insulator. This thesis covers the development of a working device for SOT measurements (SOT-device) in a CdTe/CdHgTe/HgTe/CdHgTe heterostructure. It involves the development of a tunnel barrier (ZrOx) as well as the investigation of the behavior of a ferromagnetic layer stack on top of etched HgTe. The main result of this work is the successful construction and evaluation of a working SOT-device, which exhibits the up to date most efficient switching of in-plane magnetized ferromagnetic layer stacks. In order to avoid hybridization between HgTe and the adjacent ferromagnetic atoms, which would cause a breakdown of the topological surface state, it is necessary to implement a thin tunnel barrier in between the TI and free layer [Zhang16]. Aside from hybridization a tunnel barrier avoids shunting of the current, that is pushed on the surface of the HgTe/CdHgTe interface. Thus a bigger part of the current can be used for spin accumulation and, at the same time, the resistance measurement of the ferromagnetic layer stack is not perturbed. In chapter 3 the focus is set on investigating the tunneling characteristics of ZrOx on top of dry etched HgTe. Thin barriers are used as the interaction of the current generated spin and the adjacent magnetization decreases with distance. On the other hand too small insulator thicknesses lead to leakage currents which disturb heavily the measurement of the resistance of the ferromagnetic layer stack. Thus an optimum thickness of 10 ALD cycles (\(d\approx 1.6\rm\, nm\)) is determined which yields a resistance area product of \(R\cdot A \approx 3\rm\, k\Omega\mu m^{2}\). This corresponds to a tunneling resistance of \(R_{T}\approx 20\rm\, k\Omega\) over a structure surface of \(A_{T} = 0.12\rm\, \mu m^2\). Multiple samples with different thicknesses have been produced. All samples have been examined on their tunneling behavior. The resistance area product as a function of thickness shows a linear behavior on a logarithmic scale. Furthermore all working samples show non-linear I-V curves as well as parabolic dI/dV-curves. Additionally the tunneling resistance \(R_{T}\) increases with decreasing temperature. All above mentioned properties are typical for tunnel barriers which do not include pinholes [Jonsson00]. The last part of chapter 3 deals with thermal properties of HgTe. By measuring the second harmonic of a biasing AC current in the channel below the tunnel barrier it is attempted to extract the diffusion thermopower of the heated electrons. Unfortunately the measured signal showed a far superior contribution of the first harmonic. According to electric circuit simulations a small asymmetry in the barrier (penetration and leaving point of electrons) could be responsible for this behavior. A ferromagnetic layer stack, consisting of PY/Cu/CoFe, serves as a sensor for magnetization changes due to external fields and current induced spin accumulations. The layer stack exhibits a giant magnetoresistance (GMR) which has been measured by a resistance bridge. The biggest peculiarity in depositing a GMR stack on top of HgTe is that its easy axis forms along only one of the crystal axes (\((110)\) or \((1\overline{1}0)\)). The reason for this anisotropy is still unclear. Sources such as an influence of the terminating material, miscut, furrows during IBE or sputter ripples have been ruled out. It can be speculated that the surface states due to HgTe might have an influence on the development of this easy axis but this would need further investigation. A consequence of this unexpected anisotropy is that every CdTe/CdHgTe/HgTe/CdHgTe wafer has first to be characterized in SQUID in order to find the easy axis. A ferromagnetic resonance (FMR) measurement confirmed this observation. The shape of the ferromagnetic layer stack is chosen to be an ellipse in order to support the easy axis direction by shape anisotropy. Over 8 million ellipses are used to generate a SQUID signal of \(m > 10^{-5}\rm\, emu\). This is sufficient to extract the main characteristics of an average nano pillar under the influence of an external magnetic field. As in the case of bigger structures the ellipse shaped structure shows a step-like behavior. A measured minor loop confirms the existence of the irreversible anti-parallel stable magnetic state. Furthermore this state persists for both directions at \(m=0\) resulting in an anti-ferromagnetic coupling between Py and CoFe. The geometry of the SOT-device is chosen in such a way that the current induced spin aligns either parallel or anti-parallel to the effective magnetic field \(\vec{B}_{eff}=\vec{B}_{ext}+\vec{B}_{aniso}+\vec{B}_{shape}\), which acts on the pillar. Due to interaction of the spin with the adjacent magnetization of Py the magnetization direction gets changed by a torque \(\vec{T}\). In general this torque can be decomposed into two components a field-like torque \(\vec{\tau}_{FL}\) and a damping-like torque \(\vec{\tau}_{DL}\) [Manchon19]. In the case of TIs \(\vec{T}\) is additionally depending on the z-component of \(\vec{m}\) [Ndiaye17]. In our case the magnetization is lying in the sample plane (\(m_{z}=0\)) which results in \(\vec{\tau}_{DL}=0\). Thus, in the case of \(\vec{S}\parallel\left(\vec{\hat{z}}\times\vec{j}\right)\) and \(\vec{j}\parallel\vec{\hat{y}}\), the only spin dependent effective magnetic field is \(\vec{B}_{FL}=\tau_{FL}\cdot\vec{\hat{x}}\) which is lying parallel or anti-parallel to \(\vec{B}_{eff}\). The evaluation of \(\vec{B}_{FL}\) can therefore be done in the following manner. First a high \(B_{ext}\) has to be set along the easy axis of the pillar. Then \(B_{ext}\) has to be reduced just a few \(\rm\, Oe\) before the switching occurs at the magnetic field \(B_{ext,0}\). At the magnetic field \(\Delta B = B_{ext}-B_{ext,0}\approx 0.5\rm\, Oe\) the lower resistive state should be stable over a longer time range (\(10-30\rm\, min\)) in order to exclude switching due to fluctuations. Now a positive or negative current can be pushed through the channel below the pillar. For one of the two current directions the magnetization of Py switches. It is therefore not a thermal effect that drives the change of \(\vec{m}\). Current densities that are able to switch \(\vec{m}\) at small \(\Delta B\neq 0\) lie in the range of \(j\approx 10^{4}\rm\, A/cm^{2}\). In all experiments the switching efficiency \(\Delta B/j\) decreases with rising \(j\). Furthermore the efficiency as a function of \(j\) depends on the temperature as \(\Delta B/j\) values tend to be up to 20 times higher at \(T=1.8\rm\, K\) and \(j\approx 0\) than at \(T=4.2\rm\, K\). This temperature dependence suggests that switching occurs not due to Oersted fields. Furthermore the Biot-Savart fields had been calculated for four different models: an infinite long rectangular wire, two infinite planes, a full volume and two thin volume planes. Every model shows an efficiency, which is at least three times lower than the observation. The highest efficiencies in our samples show up to 10 times higher values than in heavy-metal/ferromagnets heterostructures. In contrast to measurement procedures of most other groups our method leads to direct determination of SOT parameters like the effective magnetic field \(\vec{B}_{FL}\). Other groups make use of spin-transfer FMR (ST-FMR) where they AC bias their structure and extract SOT parameters (like \(\tau_{FL}\) and \(\tau_{DL}\)) from second harmonics by fitting theoretical models. Material systems consisting of TIs and magnetic insulators (MIs) on the other hand show 10 times higher efficiencies [Khang18,Li19]. In those cases the magnetization points out of the sample plane which is conceptually different from in-plane magnetic anisotropy geometries like in our case. The greatest benefit in-plane magnetic anisotropy systems is its easy realisation [Bhatti17]. Here only an elliptical shape has to be lithographically implemented instead of conducting research on the appropriate combination of material systems that result in perpendicular magnetic anisotropies [Apalkov16]. Despite the fact that in our case only \(\vec{\tau}_{FL}\) acts as the driving force for changing \(m\) our device still exhibits the up to date highest efficiencies in the class of in-plane magnetized anisotropies of all material classes ever recorded.}, language = {en} } @phdthesis{Zipf2021, author = {Zipf, Matthias}, title = {Ber{\"u}hrungslose Temperaturmessung an Gasen und keramisch beschichteten Oberfl{\"a}chen bei hohen Temperaturen}, doi = {10.25972/OPUS-24024}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-240248}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Station{\"a}re Gasturbinen k{\"o}nnen von großer Bedeutung f{\"u}r die Verlangsamung des Klima-wandels und bei der Bew{\"a}ltigung der Energiewende sein. F{\"u}r die Weiterentwicklung von Gasturbinen zu h{\"o}heren Betriebstemperaturen und damit einhergehend zu h{\"o}heren Wirkungs-graden werden ber{\"u}hrungslose Messverfahren zur Ermittlung der Oberfl{\"a}chentemperatur von Turbinenschaufeln und der Gastemperatur der heißen Verbrennungsgase w{\"a}hrend des Be-triebs ben{\"o}tigt. Im Rahmen dieser Arbeit werden daher Methoden der ber{\"u}hrungslosen Tem-peraturmessung unter Verwendung von Infrarotstrahlung untersucht. Die ber{\"u}hrungslose Messung der Oberfl{\"a}chentemperatur moderner Turbinenschaufeln muss aufgrund derer infrarot-optischer Oberfl{\"a}cheneigenschaften im Wellenl{\"a}ngenbereich des mitt-leren Infrarots durchgef{\"u}hrt werden, in welchem die Turbinenbrenngase starke Absorptions-banden aufweisen. Zur Entwicklung eines ad{\"a}quaten Strahlungsthermometers f{\"u}r diesen Zweck wurden im Rahmen dieser Arbeit daher durch Ermittlung von Transmissionsspektren von Kohlenstoffdioxid und Wasserdampf bei hohen Temperaturen und Dr{\"u}cken in einer ei-gens hierf{\"u}r konstruierten Heißgas-Messzelle zun{\"a}chst Wellenl{\"a}ngenbereiche identifiziert, in welchen die geplanten Messungen m{\"o}glich sind. Anschließend wurde der Prototyp eines ent-sprechend konfigurierten Strahlungsthermometers im Zuge des Testlaufes einer vollskaligen Gasturbine erfolgreich erprobt. Weiterhin wurden im Rahmen dieser Arbeit zwei m{\"o}gliche Verfahren zur ber{\"u}hrungslosen Gastemperaturmessung untersucht. Das erste untersuchte Verfahren setzt ebenfalls auf Strah-lungsthermometrie. Dieses Verfahren sieht vor, aufgrund der Temperaturabh{\"a}ngigkeit des spektralen Transmissionsgrades in den Randbereichen von ges{\"a}ttigten Absorptionsbanden von Gasen aus der in diesen Bereichen transmittierten spektralen Strahldichte auf die Gastempera-tur zu schließen. Im Rahmen dieser Arbeit wurden Voruntersuchungen f{\"u}r dieses Tempera-turmessverfahren durchgef{\"u}hrt. So konnten auf der Grundlage von experimentell ermittelten Transmissionsspektren von Kohlenstoffdioxid bei Dr{\"u}cken zwischen 5 kPa und 600 kPa und Gastemperaturen zwischen Raumtemperatur und 1073 K f{\"u}r das geplante Verfahren nutzbare Wellenl{\"a}ngenintervalle insbesondere im Bereich der Kohlenstoffdioxid-Bande bei 4,26 µm identifiziert werden. Das zweite im Rahmen dieser Arbeit untersuchte Verfahren zur ber{\"u}hrungslosen Gastem-peraturmessung basiert auf der Temperaturabh{\"a}ngigkeit der Wellenl{\"a}ngenposition der Trans-missionsminima der Absorptionsbanden von infrarot-aktiven Gasen. Im Hinblick darauf wur-de dieses Ph{\"a}nomen anhand von experimentell bestimmten hochaufgel{\"o}sten Transmissions-spektren von Kohlenstoffdioxid {\"u}berpr{\"u}ft. Weiterhin wurden m{\"o}gliche Wellenl{\"a}ngenbereiche identifiziert und hinsichtlich ihrer Eignung f{\"u}r das geplante Verfahren charakterisiert. Als am vielversprechendsten erwiesen sich hierbei Teilbanden in den Bereichen um 2,7 µm und um 9,2 µm. Unter Beimischung von Stickstoff mit Partialdr{\"u}cken von bis zu 390 kPa erwies sich zudem auch die Bande bei 4,26 µm als geeignet. Die im Rahmen dieser Arbeit experimentell ermittelten Transmissionsspektren konnten dar-{\"u}ber hinaus schließlich durch Vergleich mit entsprechenden HITRAN-Simulationen verifiziert werden.}, subject = {Pyrometrie}, language = {de} } @phdthesis{Bathon2021, author = {Bathon, Thomas}, title = {Gezielte Manipulation Topologischer Isolatoren}, doi = {10.25972/OPUS-23920}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-239204}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Neue physikalische Erkenntnisse vervollst{\"a}ndigen die Sicht auf die Welt und erschließen gleichzeitig Wege f{\"u}r Folgeexperimente und technische Anwendungen. Das letzte Jahrzehnt der Festk{\"o}rperforschung war vom zunehmenden Fokus der theoretischen und experimentellen Erkundung topologischer Materialien gepr{\"a}gt. Eine fundamentale Eigenschaft ist ihre Resistenz gegen{\"u}ber solchen St{\"o}rungen, welche spezielle physikalische Symmetrien nicht verletzen. Insbesondere die Topologischen Isolatoren - Halbleiter mit isolierenden Volumen- sowie gleichzeitig leitenden und spinpolarisierten Oberfl{\"a}chenzust{\"a}nden - sind vielversprechende Kandidaten zur Realisierung breitgef{\"a}cherter spintronischer Einsatzgebiete. Bis zur Verwirklichung von Quantencomputern und anderer, heute noch exotisch anmutender Konzepte bedarf es allerdings ein umfassenderes Verst{\"a}ndnis der grundlegenden, physikalischen Zusammenh{\"a}nge. Diese kommen vor allem an Grenzfl{\"a}chen zum Tragen, weshalb oberfl{\"a}chensensitive Methoden bei der Entdeckung der Topologischen Isolatoren eine wichtige Rolle spielten. Im Rahmen dieser Arbeit werden daher strukturelle, elektronische und magnetische Eigenschaften Topologischer Isolatoren mittels Tieftemperatur-Rastertunnelmikroskopie und -spektroskopie sowie begleitenden Methoden untersucht. Die Ver{\"a}nderung der Element-Ausgangskonzentration w{\"a}hrend dem Wachstum des prototypischen Topologischen Isolators Bi2Te3 f{\"u}hrt zur Realisierung eines topologischen p-n {\"U}bergangs innerhalb des Kristalls. Bei einem spezifischen Verh{\"a}ltnis von Bi zu Te in der Schmelze kommt es aufgrund unterschiedlicher Erstarrungstemperaturen der Komponenten zu einer Ansammlung von Bi- und Te-reichen Gegenden an den gegen{\"u}berliegenden Enden des Kristalls. In diesen bildet sich infolge des jeweiligen Element{\"u}berschusses durch Kristallersetzungen und -fehlstellen eine Dotierung des Materials aus. Daraus resultiert die Existenz eines {\"U}bergangsbereiches, welcher durch Transportmessungen verifiziert werden kann. Mit der r{\"a}umlich aufl{\"o}senden Rastertunnelmikroskopie wird diese Gegend lokalisiert und strukturell sowie elektronisch untersucht. Innerhalb des {\"U}bergangsbereiches treten charakteristische Kristalldefekte beider Arten auf - eine Defektunterdr{\"u}ckung bleibt folglich aus. Dennoch ist dort der Beitrag der Defekte zum Stromtransport aufgrund ihres gegens{\"a}tzlichen Dotiercharakters vernachl{\"a}ssigbar, sodass der topologische Oberfl{\"a}chenzustand die maßgeblichen physikalischen Eigenschaften bestimmt. Dar{\"u}ber hinaus tritt der {\"U}bergangsbereich in energetischen und r{\"a}umlichen Gr{\"o}ßenordnungen auf, die Anwendungen bei Raumtemperatur denkbar machen. Neben der Ver{\"a}nderung Topologischer Isolatoren durch den gezielten Einsatz intrinsischer Kristalldefekte bieten magnetische St{\"o}rungen die M{\"o}glichkeit zur Pr{\"u}fung des topologischen Oberfl{\"a}chenzustandes auf dessen Widerstandsf{\"a}higkeit sowie der gegenseitigen Wechselwirkungen. Die Zeitumkehrinvarianz ist urs{\"a}chlich f{\"u}r den topologischen Schutz des Oberfl{\"a}chenzustandes, weshalb magnetische Oberfl{\"a}chen- und Volumendotierung diese Symmetrie brechen und zu neuartigem Verhalten f{\"u}hren kann. Die Oberfl{\"a}chendotierung Topologischer Isolatoren kann zu einer starken Bandverbiegung und einer energetischen Verschiebung des Fermi-Niveaus f{\"u}hren. Bei einer wohldosierten Menge der Adatome auf p-dotiertem Bi2Te3 kommt die Fermi-Energie innerhalb der Volumenzustands-Bandl{\"u}cke zum Liegen. Folglich wird bei Energien rund um das Fermi-Niveau lediglich der topologische Oberfl{\"a}chenzustand bev{\"o}lkert, welcher eine Wechselwirkung zwischen den Adatomen vermitteln kann. F{\"u}r Mn-Adatome kann R{\"u}ckstreuung beobachtet werden, die aufgrund der Zeitumkehrinvarianz in undotierten Topologischen Isolatoren verboten ist. Die {\"u}berraschenderweise starken und fokussierten Streuintensit{\"a}ten {\"u}ber mesoskopische Distanzen hinweg resultieren aus der ferromagnetischen Kopplung nahegelegener Adsorbate, was durch theoretische Berechnungen und R{\"o}ntgendichroismus-Untersuchungen best{\"a}tigt wird. Gleichwohl wird f{\"u}r die Proben ein superparamagnetisches Verhalten beobachtet. Im Gegensatz dazu f{\"u}hrt die ausreichende Volumendotierung von Sb2Te3 mit V-Atomen zu einem weitreichend ferromagnetischen Verhalten. Erstaunlicherweise kann trotz der weitl{\"a}ufig verbreiteten Theorie Zeitumkehrinvarianz-gebrochener Dirac-Zust{\"a}nde und der experimentellen Entdeckung des Anormalen Quanten-Hall-Effektes in {\"a}hnlichen Probensystemen keinerlei Anzeichen einer spektroskopischen Bandl{\"u}cke beobachtet werden. Dies ist eine direkte Auswirkung der dualen Natur der magnetischen Adatome: W{\"a}hrend sie einerseits eine magnetisch induzierte Bandl{\"u}cke {\"o}ffnen, besetzen sie diese durch St{\"o}rstellenresonanzen wieder. Ihr stark lokaler Charakter kann durch die Aufnahme ihrer r{\"a}umlichen Verteilung aufgezeichnet werden und f{\"u}hrt zu einer Mobilit{\"a}ts-Bandl{\"u}cke, deren Indizien durch vergleichende Untersuchungen an undotiertem und dotiertem Sb2Te3 best{\"a}tigt werden.}, subject = {Rastertunnelmikroskopie}, language = {de} } @phdthesis{Schummer2021, author = {Schummer, Bernhard}, title = {Stabilisierung von CdS Nanopartikeln mittels Pluronic P123}, doi = {10.25972/OPUS-23844}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-238443}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Ziel dieser Arbeit war die Stabilisierung von Cadmiumsulfid CdS mit Pluronic P123, einem Polymer. CdS ist ein Halbleiter, der zum Beispiel in der Photonik und bei optischen Anwendungen eingesetzt wird und ist deshalb {\"a}ußerst interessant, da seine Bandl{\"u}cke als Nanopartikel verschiebbar ist. F{\"u}r die Photovoltaik ist es ein attraktives Material, da es im sichtbaren Licht absorbiert und durch die Bandl{\"u}ckenverschiebung effektiver absorbieren kann. Dies ist unter dem Namen Quantum Size Effekt bekannt. Als Feststoff ist CdS f{\"u}r einen solchen Anwendungsbereich weniger geeignet, zumal der Effekt der Bandl{\"u}ckenverschiebung dort nicht auftritt. Wissenschaftler bem{\"u}hen sich deshalb CdS als Nanopartikeln zu stabilisieren, weil CdS in w{\"a}ssrigen L{\"o}sungen ein stark aggregierendes System, also stark hydrophob ist. Es wurden zwei Kriterien f{\"u}r die erfolgreiche Stabilisierung von CdS festgelegt. Zum einen muss das Cds homogen im Medium verteilt sein und darf nicht agglomerieren. Zum anderen, m{\"u}ssen die CdS Nanopartikel kleiner als 100 A sein. In meiner Arbeit habe ich solche Partikel hergestellt und stabilisiert, d.h. verhindert, dass die Partikel weiterwachsen und gleichzeitig ihre Bandl{\"u}cke verschoben wird. Die Herausforderung liegt nicht in der Herstellung, aber in der L{\"o}sung von CdS im Tr{\"a}gerstoff, da CdS in den meisten Fl{\"u}ssigkeiten nicht l{\"o}slich ist und ausf{\"a}llt. Die Stabilisierung in w{\"a}ssrigen L{\"o}sungen wurde das erste Mal durch Herrn Prof. Dr. Rempel mit Ethylendiamintetraessigs{\"a}ure EDTA erfolgreich durchgef{\"u}hrt. Mit EDTA k{\"o}nnen jedoch nur sehr kleine Konzentrationen stabilisiert werden. Zudem k{\"o}nnen Parameter wie Gr{\"o}ße und Geschwindigkeit der Reaktion beim Stabilisieren der CdS-Nanopartikel nicht angepasst oder beeinflusst werden. Dieses Problem ist dem, vieler medizinischer Wirkstoffe sehr {\"a}hnlich, die in hohen Konzentrationen verabreicht werden sollen, aber nicht oder nur schwer in Wasser l{\"o}slich sind (Bsp. Kurkumin). Ein vielversprechender L{\"o}sungsweg ist dort, die Wirkstoffe in große Tr{\"a}gerpartikel (sog. Mizellen) einzuschleusen, die ihrerseits gut l{\"o}slich sind. In meiner Arbeit habe ich genau diesen Ansatz f{\"u}r CdS verfolgt. Als Tr{\"a}gerpartikel/Mizelle wurde das bekannte Copolymer Pluronic P123 verwendet. Aus dieser Pluronic Produktreihe wird P123 gew{\"a}hlt, da es die gr{\"o}ßte Masse bei gleichzeitig h{\"o}chstem Anteil von Polypropylenoxid PPO im Vergleich zur Gesamtkettenl{\"a}nge hat. P123 ist ein tern{\"a}res Polyether oder Dreiblockkopolymer und wird von BASAF industriell produziert. Es besteht aus drei B{\"o}cken, dem mittlere Block Polypropylenoxid PPO und den beiden {\"a}ußeren Bl{\"o}cken Polyethylenoxid PEO. Der Buchstabe P steht f{\"u}r past{\"o}s, die ersten beiden Ziffern in P123 mit 300 multipliziert ergeben das molare Gewicht und die letzte Ziffer mit 10 multipliziert entspricht dem prozentualen Gewichtsanteil PEO. Die Bildung von Mizellen aus den P123 Molek{\"u}len kann bewusst {\"u}ber geringe Temperatur{\"a}nderungen gesteuert werden. Bei ungef{\"a}hr Raumtemperatur liegen Mizellen vor, die sich bei h{\"o}heren Temperaturen von sph{\"a}rischen in wurmartige Mizellen umwandeln. Oberhalb einer Konzentration von 30 Gewichtsprozent wtp bilden die Mizellen außerdem einen Fl{\"u}ssigkristall. Ich habe in meiner Arbeit zun{\"a}chst P123 mit Hilfe von R{\"o}ntgenstreuung untersucht. Anders als andere Methoden gibt R{\"o}ntgenstreuung direkten Aufschluss {\"u}ber die Morphologie der Stoffe. R{\"o}ntgenstreuung kann die Mischung von P123 mit CdS abbilden und l{\"a}sst darauf schließen, ob das Ziel erreicht werden konnte, stabile CdS Nanopartikel in P123 zu binden. F{\"u}r die Stabilisierung der Nanopartikel ist es zun{\"a}chst notwendig die richtigen Temperaturen f{\"u}r die Ausgangsl{\"o}sungen und gemischten L{\"o}sungen zu finden. Dazu muss P123 viel genauer untersucht werden, als der momentane Kenntnisstand in der Literatur. Zu diesem Zweck als auch f{\"u}r die Analyse des stabilisierten CdS habe ich ein neues Instrument am LRM entwickelt, sowie eine temperierbare Probenumgebung f{\"u}r Fl{\"u}ssigkeiten f{\"u}rs Vakuum, um morphologische Eigenschaften aus Streuamplituden und -winkeln zu entschl{\"u}sseln. Diese R{\"o}ntgenstreuanlage wurde konzipiert und gebaut, um auch im Labor P123 in kleinen Konzentrationen messen zu k{\"o}nnen. R{\"o}ntgenkleinwinkelstreuung eignet sich besonders als Messmethode, da die Probe mit einer hohen statistischen Relevanz in Fl{\"u}ssigkeit und in verschiedenen Konzentrationen analysiert werden kann. F{\"u}r die Konzentrationen 5, 10 und 30 wtp konnte das temperaturabh{\"a}ngige Verhalten von P123 pr{\"a}zise mit R{\"o}ntgenkleinwinkelstreuung SAXS gemessen und dargestellt werden. F{\"u}r 5 wtp konnten die Gr{\"o}ßen der Unimere und Mizellen bestimmt werden. Trotz der nicht vorhandenen Absolutkalibration f{\"u}r diese Konzentration konnten dank des neu eingef{\"u}hrten Parameters kappa eine Dehydrierung der Mizellen mit steigender Temperatur abgesch{\"a}tzt, sowie eine Hysterese zwischen dem Heizen und Abk{\"u}hlen festgestellt werden. F{\"u}r die Konzentration von 10 wtp wurden kleinere Temperaturschritte gew{\"a}hlt und die Messungen zus{\"a}tzlich absolut kalibriert. Es wurden die Gr{\"o}ßen und Streul{\"a}ngendichten SLD der Unimere und Mizellen pr{\"a}zise bestimmt und ein vollst{\"a}ndiges Form-Phasendiagramm erstellt. Auch f{\"u}r diese Konzentration konnte eine Hysterese eindeutig an der Gr{\"o}ße, SLD und am Parameter kappa gezeigt werden, sowie eine Dehydrierung des Mizellenkerns. Dies beweist, dass der Parameter kappa geeignet ist, um bei nicht absolut kalibrierten Messungen, Aussagen {\"u}ber die Hydrierung und Hysterese komplexer Kern-H{\"u}lle Modelle zu machen. F{\"u}r die Konzentration von 30 wtp konnte zwischen 23°C und 35°C eine FCC Struktur nachgewiesen werden. Dabei vergr{\"o}ßert sich die Gitterkonstante der FCC Struktur von 260 A auf 289 A in Abh{\"a}ngigkeit der Temperatur. Durch das Mischen zweier L{\"o}sungen, zum einen CdCl2 und 30 wtp P123 und zum anderen Na2S und 30 wtp P123, konnte CdS erfolgreich stabilisiert werden. Mit einer Kamera wurde die Gelbf{\"a}rbung der L{\"o}sung, und somit die Bildung des CdS, in Abh{\"a}ngigkeit der Zeit untersucht. Es konnte festgestellt werden, dass das Bilden der CdS Nanopartikel je nach Konzentration und Temperierprogramm zwischen 30 und 300 Sekunden dauert und einer logistischen Wachstumsfunktion folgt. H{\"o}here Konzentrationen CdS bewirken einen schnelleren Anstieg der Wachstumsfunktion. Mittels UV-Vis Spektroskopie konnte gezeigt werden, dass die Bandl{\"u}cke von CdS mit steigender Konzentration konstant bei 2,52 eV bleibt. Eine solche Verschiebung der Bandl{\"u}cke von ungef{\"a}hr 0,05 eV im Vergleich zum Festk{\"o}rper, deutet auf einen CdS Partikeldurchmesser von 80A hin. Mit SAXS konnte gezeigt werden, dass sich die fl{\"u}ssigkristalline Struktur des P123 bei zwei verschiedenen Konzentrationen CdS, von 0,005 und 0,1 M, nicht {\"a}ndert. Das CdS wird zwischen den Mizellen, also durch die Bildung des Fl{\"u}ssigkristalls, und im Kern der Mizelle aufgrund seiner Hydrophobizit{\"a}t stabilisiert. Die Anfangs definierten Kriterien f{\"u}r eine erfolgreiche Stabilisierung wurden erf{\"u}llt. P123 ist ein hervorragend geeignetes Polymer, um hydrophobes CdS, sowohl durch die Bildung eines Fl{\"u}ssigkristalls, als auch im Kern der Mizelle zu stabilisieren.}, subject = {R{\"o}ntgen-Kleinwinkelstreuung}, language = {de} } @phdthesis{Kasper2021, author = {Kasper, Christian Andreas}, title = {Engineering of Highly Coherent Silicon Vacancy Defects in Silicon Carbide}, doi = {10.25972/OPUS-23779}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-237797}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {In this work the creation of silicon vacancy spin defects in silicon carbide with predictable properties is demonstrated. Neutron and electron irradiation was used to create silicon vacancy ensembles and proton beam writing to create isolated vacancies at a desired position. The coherence properties of the created silicon vacancies as a function of the emitter density were investigated and a power-law function established. Sample annealing was implemented to increase the coherence properties of existing silicon vacancies. Further, spectral hole burning was used to implement absolute dc-magnetometry.}, subject = {St{\"o}rstelle}, language = {en} } @phdthesis{Balles2021, author = {Balles, Andreas}, title = {In-line phase contrast and grating interferometry at a liquid-metal-jet source with micrometer resolution}, doi = {10.25972/OPUS-23591}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-235917}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {As a non-destructive testing method, X-ray imaging has proved to be suitable for the examination of a variety of objects. The measurement principle is based on the attenuation of X-rays caused by these objects. This attenuation can be recorded as shades of intensity using X-ray detectors and thus contains information about the inner structure of the investigated object. Since X-rays are electromagnetic waves, they also experience a change of phase in addition to their attenuation while penetrating an object. In general, imaging methods based on this effect are referred to as phase contrast imaging techniques. In the laboratory, the two mainly used methods are the propagation based phase contrast or in-line phase contrast and the grating interferometry. While in-line phase contrast - under certain conditions - shows edge enhancement at interfaces due to interference, phase contrast in the grating interferometry is only indirectly measurable by the use of several gratings. In addition to phase contrast, grating interferometry provides access to the so-called dark-field imaging contrast, which measures the scattering of X-rays caused by an object. These two imaging techniques, together with a novel concept of laboratory X-ray sources, the liquid-metal-jet, form the main part of this work. Compared to conventional X-ray sources, the liquid-metal-jet source offers higher brightness. The term brightness is defined by the number of X-ray photons per second, emitting area (area of the X-ray spot) and solid angle at which they are emitted. On the basis of this source, a high resolution in-line phase contrast setup was partially developed in the scope of this work. Several computed tomographies show the feasibility of in-line phase contrast and the improvement of image quality by applying phase retrieval algorithms. Moreover, the determination of optimized sample positions for in-line phase contrast imaging is treated at which the edge enhancement is maximized. Based on primitive fiber objects, this optimization has proven to be a good approximation. With its high brightness in combination with a high spatial coherence, the liquid-metal-jet source is also interesting for grating interferometry. The development of such a setup is also part of this work. The overall concept and the characterization of the setup is presented as well as the applicability and its limits for the investigation of various objects. Due to the very unique concept of this grating interferometer it was possible to realize a modified interferometer system by using a single grating only. Its concept and results are also presented in this work. Furthermore, a grating interferometer based on a microfocus X-ray tube was tested regarding its performance. Thereby, parameters like the anode material, acquisition geometry and gratings were altered in order to find the advantages and disadvantages of each configuration.}, subject = {Phasenkontrastverfahren}, language = {en} } @phdthesis{Ullherr2021, author = {Ullherr, Maximilian}, title = {Optimization of Image Quality in High-Resolution X-Ray Imaging}, doi = {10.25972/OPUS-23117}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-231171}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {The SNR spectra model and measurement method developed in this work yield reliable application-specific optima for image quality. This optimization can either be used to understand image quality, find out how to build a good imaging device or to (automatically) optimize the parameters of an existing setup. SNR spectra are here defined as a fraction of power spectra instead of a product of device properties. In combination with the newly developed measurement method for this definition, a close correspondence be- tween theory and measurement is achieved. Prior approaches suffer from a focus on theoretical definitions without fully considering if the defined quantities can be measured correctly. Additionally, discrepancies between assumptions and reality are common. The new approach is more reliable and complete, but also more difficult to evaluate and interpret. The signal power spectrum in the numerator of this fraction allows to model the image quality of different contrast mechanisms that are used in high-resolution x-ray imaging. Superposition equations derived for signal and noise enable understanding how polychromaticity (or superposition in general) affects the image quality. For the concept of detection energy weighting, a quantitative model for how it affects im- age quality was found. It was shown that—depending on sample properties—not detecting x-ray photons can increase image quality. For optimal computational energy weighting, more general formula for the optimal weight was found. In addition to the signal strength, it includes noise and modulation transfer. The novel method for measuring SNR spectra makes it possible to experimentally optimize image quality for different contrast mechanisms. This method uses one simple measurement to obtain a measure for im- age quality for a specific experimental setup. Comparable measurement methods typically require at least three more complex measurements, where the combination may then give a false result. SNR spectra measurements can be used to: • Test theoretical predictions about image quality optima. • Optimize image quality for a specific application. • Find new mechanisms to improve image quality. The last item reveals an important limitation of x- ray imaging in general: The achievable image quality is limited by the amount of x-ray photons interacting with the sample, not by the amount incident per detector area (see section 3.6). If the rest of the imaging geometry is fixed, moving the detector only changes the field of view, not the image quality. A practical consequence is that moving the sample closer to the x-ray source increases image quality quadratically. The results of a SNR spectra measurement represent the image quality only on a relative scale, but very reliable. This relative scale is sufficient for an optimization problem. Physical effects are often already clearly identifiable by the shape of the functional relationship between input parameter and measurement result. SNR spectra as a quantity are not well suited for standardization, but instead allow a reliable optimization. Not satisfying the requirements of standardization allows to use methods which have other advantages. In this case, the SNR spectra method describes the image quality for a specific application. Consequently, additional physical effects can be taken into account. Additionally, the measurement method can be used to automate the setting of optimal machine parameters. The newly proposed image quality measure detection effectiveness is better suited for standardization or setup comparison. This quantity is very similar to measures from other publications (e.g. CNR(u)), when interpreted monochromatically. Polychromatic effects can only be modeled fully by the DE(u). The measurement processes of both are different and the DE(u) is fundamentally more reliable. Information technology and digital data processing make it possible to determine SNR spectra from a mea- sured image series. This measurement process was designed from the ground up to use these technical capabilities. Often, information technology is only used to make processes easier and more exact. Here, the whole measurement method would be infeasible without it. As this example shows, using the capabilities of digital data processing much more extensively opens many new possibilities. Information technology can be used to extract information from measured data in ways that analog data processing simply cannot. The original purpose of the SNR spectra optimization theory and methods was to optimize high resolution x-ray imaging only. During the course of this work, it has become clear that some of the results of this work affect x-ray imaging in general. In the future, these results could be applied to MI and NDT x-ray imaging. Future work on the same topic will also need to consider the relationship between SNR spectra or DE(u) and sufficient image quality.This question is about the minimal image quality required for a specific measurement task.}, subject = {Bildqualit{\"a}t}, language = {en} } @phdthesis{Metzger2021, author = {Metzger, Christian Thomas Peter}, title = {Development of photoemission spectroscopy techniques for the determination of the electronic and geometric structure of organic adsorbates}, doi = {10.25972/OPUS-22952}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-229525}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {The projects presented in this thesis cover the examination of the electronic and structural properties of organic thin films at noble metal-organic interfaces. Angle-resolved photoemission spectroscopy is used as the primary investigative tool due to the connection of the emitted photoelectrons to the electronic structure of the sample. The surveyed materials are of relevance for fundamental research and practical applications on their own, but also serve as archetypes for the photoemission techniques presented throughout the four main chapters of this thesis. The techniques are therefore outlined with their adaptation to other systems in mind and a special focus on the proper description of the final state. The most basic description of the final state that is still adequate for the evaluation of photoemission data is a plane wave. Its simplicity enables a relatively intuitive interpretation of photoemission data, since the initial and final state are related to one another by a Fourier transform and a geometric factor in this approximation. Moreover, the initial states of some systems can be reconstructed in three dimensions by combining photoemission measurements at various excitation energies. This reconstruction can even be carried out solely based on experimental data by using suitable iterative algorithms. Since the approximation of the final state in the photoemission process by a plane wave is not valid in all instances, knowledge on the limitations of its applicability is indispensable. This can be gained by a comparison to experimental data as well as calculations with a more detailed description of the photoemission final state. One possible appraoch is based on independently emitting atoms where the coherent superposition of partial, atomic final states produces the total final state. This approach can also be used for more intricate studies on organic thin films. To this end, experimental data can be related to theoretical calculations to gain extensive insights into the structural and electronic properties of molecules in organic thin films.}, subject = {ARPES}, language = {en} } @phdthesis{Bunzmann2021, author = {Bunzmann, Nikolai Eberhard}, title = {Excited State Pathways in 3rd Generation Organic Light-Emitting Diodes}, doi = {10.25972/OPUS-22078}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-220786}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {This work revealed spin states that are involved in the light generation of organic light-emitting diodes (OLEDs) that are based on thermally activated delayed fluorescence (TADF). First, several donor:acceptor-based TADF systems forming exciplex states were investigated. Afterwards, a TADF emitter that shows intramolecular charge transfer states but also forms exciplex states with a proper donor molecule was studied. The primary experimental technique was electron paramagnetic resonance (EPR), in particular the advanced methods electroluminescence detected magnetic resonance (ELDMR), photoluminescence detected magnetic resonance (PLDMR) and electrically detected magnetic resonance (EDMR). Additional information was gathered from time-resolved and continuous wave photoluminescence measurements.}, subject = {Elektronenspinresonanz}, language = {en} }