@article{BeerSteffanDewenterHaerteletal.2016, author = {Beer, Katharina and Steffan-Dewenter, Ingolf and H{\"a}rtel, Stephan and Helfrich-F{\"o}rster, Charlotte}, title = {A new device for monitoring individual activity rhythms of honey bees reveals critical effects of the social environment on behavior}, series = {Journal of Comparative Physiology A}, volume = {202}, journal = {Journal of Comparative Physiology A}, number = {8}, doi = {10.1007/s00359-016-1103-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-188030}, pages = {555-565}, year = {2016}, abstract = {Chronobiological studies of individual activity rhythms in social insects can be constrained by the artificial isolation of individuals from their social context. We present a new experimental set-up that simultaneously measures the temperature rhythm in a queen-less but brood raising mini colony and the walking activity rhythms of singly kept honey bees that have indirect social contact with it. Our approach enables monitoring of individual bees in the social context of a mini colony under controlled laboratory conditions. In a pilot experiment, we show that social contact with the mini colony improves the survival of monitored young individuals and affects locomotor activity patterns of young and old bees. When exposed to conflicting Zeitgebers consisting of a light-dark (LD) cycle that is phase-delayed with respect to the mini colony rhythm, rhythms of young and old bees are socially synchronized with the mini colony rhythm, whereas isolated bees synchronize to the LD cycle. We conclude that the social environment is a stronger Zeitgeber than the LD cycle and that our new experimental set-up is well suited for studying the mechanisms of social entrainment in honey bees.}, language = {en} } @article{YadavSelvarajBenderetal.2016, author = {Yadav, Preeti and Selvaraj, Bhuvaneish T. and Bender, Florian L. P. and Behringer, Marcus and Moradi, Mehri and Sivadasan, Rajeeve and Dombert, Benjamin and Blum, Robert and Asan, Esther and Sauer, Markus and Julien, Jean-Pierre and Sendtner, Michael}, title = {Neurofilament depletion improves microtubule dynamics via modulation of Stat3/stathmin signaling}, series = {Acta Neuropathologica}, volume = {132}, journal = {Acta Neuropathologica}, number = {1}, doi = {10.1007/s00401-016-1564-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-188234}, pages = {93-110}, year = {2016}, abstract = {In neurons, microtubules form a dense array within axons, and the stability and function of this microtubule network is modulated by neurofilaments. Accumulation of neurofilaments has been observed in several forms of neurodegenerative diseases, but the mechanisms how elevated neurofilament levels destabilize axons are unknown so far. Here, we show that increased neurofilament expression in motor nerves of pmn mutant mice, a model of motoneuron disease, causes disturbed microtubule dynamics. The disease is caused by a point mutation in the tubulin-specific chaperone E (Tbce) gene, leading to an exchange of the most C-terminal amino acid tryptophan to glycine. As a consequence, the TBCE protein becomes instable which then results in destabilization of axonal microtubules and defects in axonal transport, in particular in motoneurons. Depletion of neurofilament increases the number and regrowth of microtubules in pmn mutant motoneurons and restores axon elongation. This effect is mediated by interaction of neurofilament with the stathmin complex. Accumulating neurofilaments associate with stathmin in axons of pmn mutant motoneurons. Depletion of neurofilament by Nefl knockout increases Stat3-stathmin interaction and stabilizes the microtubules in pmn mutant motoneurons. Consequently, counteracting enhanced neurofilament expression improves axonal maintenance and prolongs survival of pmn mutant mice. We propose that this mechanism could also be relevant for other neurodegenerative diseases in which neurofilament accumulation and loss of microtubules are prominent features.}, language = {en} } @article{BemmBeckerLarischetal.2016, author = {Bemm, Felix and Becker, Dirk and Larisch, Christina and Kreuzer, Ines and Escalante-Perez, Maria and Schulze, Waltraud X. and Ankenbrand, Markus and Van de Weyer, Anna-Lena and Krol, Elzbieta and Al-Rasheid, Khaled A. and Mith{\"o}fer, Axel and Weber, Andreas P. and Schultz, J{\"o}rg and Hedrich, Rainer}, title = {Venus flytrap carnivorous lifestyle builds on herbivore defense strategies}, series = {Genome Research}, volume = {26}, journal = {Genome Research}, number = {6}, doi = {10.1101/gr.202200.115}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-188799}, pages = {812-825}, year = {2016}, abstract = {Although the concept of botanical carnivory has been known since Darwin's time, the molecular mechanisms that allow animal feeding remain unknown, primarily due to a complete lack of genomic information. Here, we show that the transcriptomic landscape of the Dionaea trap is dramatically shifted toward signal transduction and nutrient transport upon insect feeding, with touch hormone signaling and protein secretion prevailing. At the same time, a massive induction of general defense responses is accompanied by the repression of cell death-related genes/processes. We hypothesize that the carnivory syndrome of Dionaea evolved by exaptation of ancient defense pathways, replacing cell death with nutrient acquisition.}, language = {en} } @article{KupperStigloherFeldhaaretal.2016, author = {Kupper, Maria and Stigloher, Christian and Feldhaar, Heike and Gross, Roy}, title = {Distribution of the obligate endosymbiont Blochmannia floridanus and expression analysis of putative immune genes in ovaries of the carpenter ant Camponotus floridanus}, series = {Arthropod Structure \& Development}, volume = {45}, journal = {Arthropod Structure \& Development}, number = {5}, doi = {10.1016/j.asd.2016.09.004}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-187482}, pages = {475-487}, year = {2016}, abstract = {The bacterial endosymbiont Blochmannia floridanus of the carpenter ant Camponotus floridanus contributes to its hosts' ontogeny via nutritional upgrading during metamorphosis. This primary endosymbiosis is essential for both partners and vertical transmission of the endosymbionts is guaranteed by bacterial infestation of oocytes. Here we present a detailed analysis of the presence and localisation of B. floridanus in the ants' ovaries obtained by FISH and TEM analyses. The most apical part of the germarium harbouring germ-line stem cells (GSCs) is not infected by the bacteria. The bacteria are detectable for the first time in lower parts of the germarium when cystocytes undergo the 4th and 5th division and B. floridanus infects somatic cells lying under the basal lamina surrounding the ovarioles. With the beginning of cystocyte differentiation, the endosymbionts are exclusively transported from follicle cells into the growing oocytes. This infestation of the oocytes by bacteria very likely involves exocytosis endocytosis processes between follicle cells and the oocytes. Nurse cells were never found to harbour the endosymbionts. Furthermore we present first gene expression data in C floridanus ovaries. These data indicate a modulation of immune gene expression which may facilitate tolerance towards the endosymbionts and thus may contribute to their transovarial transmission.}, language = {en} } @article{ChagtaiZillDaineseetal.2016, author = {Chagtai, Tasnim and Zill, Christina and Dainese, Linda and Wegert, Jenny and Savola, Suvi and Popov, Sergey and Mifsud, William and Vujanic, Gordan and Sebire, Neil and Le Bouc, Yves and Ambros, Peter F. and Kager, Leo and O`Sullivan, Maureen J. and Blaise, Annick and Bergeron, Christophe and Holmquist Mengelbier, Linda and Gisselsson, David and Kool, Marcel and Tytgat, Godelieve A.M. and van den Heuvel-Eibrink, Marry M. and Graf, Norbert and van Tinteren, Harm and Coulomb, Aurore and Gessler, Manfred and Williams, Richard Dafydd and Pritchard-Jones, Kathy}, title = {Gain of 1q As a Prognostic Biomarker in Wilms Tumors (WTs) Treated With Preoperative Chemotherapy in the International Society of Paediatric Oncology (SIOP) WT 2001 Trial: a SIOP Renal Tumours Biology Consortium Study}, series = {Journal of Clinical Oncology}, volume = {34}, journal = {Journal of Clinical Oncology}, number = {26}, doi = {10.1200/JCO.2015.66.0001}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-187478}, pages = {3195-3205}, year = {2016}, abstract = {Purpose Wilms tumor (WT) is the most common pediatric renal tumor. Treatment planning under International Society of Paediatric Oncology (SIOP) protocols is based on staging and histologic assessment of response to preoperative chemotherapy. Despite high overall survival (OS), many relapses occur in patients without specific risk factors, and many successfully treated patients are exposed to treatments with significant risks of late effects. To investigate whether molecular biomarkers could improve risk stratification, we assessed 1q status and other potential copy number biomarkers in a large WT series. Materials and Methods WT nephrectomy samples from 586 SIOP WT 2001 patients were analyzed using a multiplex ligation-dependent probe amplification (MLPA) assay that measured the copy number of 1q and other regions of interest. Results One hundred sixty-seven (28\%) of 586 WTs had 1q gain. Five-year event-free survival (EFS) was 75.0\% in patients with 1q gain (95\% CI, 68.5\% to 82.0\%) and 88.2\% in patients without gain (95\% CI, 85.0\% to 91.4\%). OS was 88.4\% with gain (95\% CI, 83.5\% to 93.6\%) and 94.4\% without gain (95\% CI, 92.1\% to 96.7\%). In univariable analysis, 1q gain was associated with poorer EFS (P<.001; hazard ratio, 2.33) and OS (P=.01; hazard ratio, 2.16). The association of 1q gain with poorer EFS retained significance in multivariable analysis adjusted for 1p and 16q loss, sex, stage, age, and histologic risk group. Gain of 1q remained associated with poorer EFS in tumor subsets limited to either intermediate-risk localized disease or nonanaplastic localized disease. Other notable aberrations associated with poorer EFS included MYCN gain and TP53 loss. Conclusion Gain of 1q is a potentially valuable prognostic biomarker in WT, in addition to histologic response to preoperative chemotherapy and tumor stage.}, language = {en} } @article{HolzschuhDaineseGonzalezVaroetal.2016, author = {Holzschuh, Andrea and Dainese, Matteo and Gonzalez-Varo, Juan P. and Mudri-Stojnic, Sonja and Riedinger, Verena and Rundl{\"o}f, Maj and Scheper, Jeroen and Wickens, Jennifer B. and Wickens, Victoria J. and Bommarco, Riccardo and Kleijn, David and Potts, Simon G. and Roberts, Stuart P. M. and Smith, Henrik G. and Vil{\`a}, Montserrat and Vujic, Ante and Steffan-Dewenter, Ingolf}, title = {Mass-flowering crops dilute pollinator abundance in agricultural landscapes across Europe}, series = {Ecology Letters}, volume = {19}, journal = {Ecology Letters}, number = {10}, doi = {10.1111/ele.12657}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-187356}, pages = {1228-1236}, year = {2016}, abstract = {Mass-flowering crops (MFCs) are increasingly cultivated and might influence pollinator communities in MFC fields and nearby semi-natural habitats (SNHs). Across six European regions and 2 years, we assessed how landscape-scale cover of MFCs affected pollinator densities in 408 MFC fields and adjacent SNHs. In MFC fields, densities of bumblebees, solitary bees, managed honeybees and hoverflies were negatively related to the cover of MFCs in the landscape. In SNHs, densities of bumblebees declined with increasing cover of MFCs but densities of honeybees increased. The densities of all pollinators were generally unrelated to the cover of SNHs in the landscape. Although MFC fields apparently attracted pollinators from SNHs, in landscapes with large areas of MFCs they became diluted. The resulting lower densities might negatively affect yields of pollinator- dependent crops and the reproductive success of wild plants. An expansion of MFCs needs to be accompanied by pollinator-supporting practices in agricultural landscapes.}, language = {en} } @article{MarkertBritzProppertetal.2016, author = {Markert, Sebastian Matthias and Britz, Sebastian and Proppert, Sven and Lang, Marietta and Witvliet, Daniel and Mulcahy, Ben and Sauer, Markus and Zhen, Mei and Bessereau, Jean-Louis and Stigloher, Christian}, title = {Filling the gap: adding super-resolution to array tomography for correlated ultrastructural and molecular identification of electrical synapses at the C. elegans connectome}, series = {Neurophotonics}, volume = {3}, journal = {Neurophotonics}, number = {4}, doi = {10.1117/1.NPh.3.4.041802}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-187292}, pages = {041802}, year = {2016}, abstract = {Correlating molecular labeling at the ultrastructural level with high confidence remains challenging. Array tomography (AT) allows for a combination of fluorescence and electron microscopy (EM) to visualize subcellular protein localization on serial EM sections. Here, we describe an application for AT that combines near-native tissue preservation via high-pressure freezing and freeze substitution with super-resolution light microscopy and high-resolution scanning electron microscopy (SEM) analysis on the same section. We established protocols that combine SEM with structured illumination microscopy (SIM) and direct stochastic optical reconstruction microscopy (dSTORM). We devised a method for easy, precise, and unbiased correlation of EM images and super-resolution imaging data using endogenous cellular landmarks and freely available image processing software. We demonstrate that these methods allow us to identify and label gap junctions in Caenorhabditis elegans with precision and confidence, and imaging of even smaller structures is feasible. With the emergence of connectomics, these methods will allow us to fill in the gap-acquiring the correlated ultrastructural and molecular identity of electrical synapses.}, language = {en} } @article{ScharawIskarOrietal.2016, author = {Scharaw, Sandra and Iskar, Murat and Ori, Alessandro and Boncompain, Gaelle and Laketa, Vibor and Poser, Ina and Lundberg, Emma and Perez, Franck and Beck, Martin and Bork, Peer and Pepperkok, Rainer}, title = {The endosomal transcriptional regulator RNF11 integrates degradation and transport of EGFR}, series = {Journal of Cell Biology}, volume = {215}, journal = {Journal of Cell Biology}, number = {4}, doi = {10.1083/jcb.201601090}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-186731}, pages = {543-558}, year = {2016}, abstract = {Stimulation of cells with epidermal growth factor (EGF) induces internalization and partial degradation of the EGF receptor (EGFR) by the endo-lysosomal pathway. For continuous cell functioning, EGFR plasma membrane levels are maintained by transporting newly synthesized EGFRs to the cell surface. The regulation of this process is largely unknown. In this study, we find that EGF stimulation specifically increases the transport efficiency of newly synthesized EGFRs from the endoplasmic reticulum to the plasma membrane. This coincides with an up-regulation of the inner coat protein complex II (COP II) components SEC23B, SEC24B, and SEC24D, which we show to be specifically required for EGFR transport. Up-regulation of these COP II components requires the transcriptional regulator RNF11, which localizes to early endosomes and appears additionally in the cell nucleus upon continuous EGF stimulation. Collectively, our work identifies a new regulatory mechanism that integrates the degradation and transport of EGFR in order to maintain its physiological levels at the plasma membrane.}, language = {en} } @article{BertChmielewskaBergmannetal.2016, author = {Bert, Bettina and Chmielewska, Justyna and Bergmann, Sven and Busch, Maximilian and Driever, Wolfgang and Finger-Baier, Karin and H{\"o}ßler, Johanna and K{\"o}hler, Almut and Leich, Nora and Misgeld, Thomas and N{\"o}ldner, Torsten and Reiher, Annegret and Schartl, Manfred and Seebach-Sproedt, Anja and Thumberger, Thomas and Sch{\"o}nfelder, Gilbert and Grune, Barbara}, title = {Considerations for a European animal welfare standard to evaluate adverse phenotypes in teleost fish}, series = {The EMBO Journal}, volume = {35}, journal = {The EMBO Journal}, number = {11}, doi = {10.15252/embj.201694448}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-188783}, pages = {1151-1154}, year = {2016}, abstract = {No abstract available.}, language = {en} } @article{SchneiderDittrichBoecketal.2016, author = {Schneider, Eberhard and Dittrich, Marcus and B{\"o}ck, Julia and Nanda, Indrajit and M{\"u}ller, Tobias and Seidmann, Larissa and Tralau, Tim and Galetzka, Danuta and El Hajj, Nady and Haaf, Thomas}, title = {CpG sites with continuously increasing or decreasing methylation from early to late human fetal brain development}, series = {Gene}, volume = {592}, journal = {Gene}, number = {1}, doi = {10.1016/j.gene.2016.07.058}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-186936}, pages = {110-118}, year = {2016}, abstract = {Normal human brain development is dependent on highly dynamic epigenetic processes for spatial and temporal gene regulation. Recent work identified wide-spread changes in DNA methylation during fetal brain development. We profiled CpG methylation in frontal cortex of 27 fetuses from gestational weeks 12-42, using Illumina 450K methylation arrays. Sites showing genome-wide significant correlation with gestational age were compared to a publicly available data set from gestational weeks 3-26. Altogether, we identified 2016 matching developmentally regulated differentially methylated positions (m-dDMPs): 1767 m-dDMPs were hypermethylated and 1149 hypomethylated during fetal development. M-dDMPs are underrepresented in CpG islands and gene promoters, and enriched in gene bodies. They appear to cluster in certain chromosome regions. M-dDMPs are significantly enriched in autism-associated genes and CpGs. Our results promote the idea that reduced methylation dynamics during fetal brain development may predispose to autism. In addition, m-dDMPs are enriched in genes with human-specific brain expression patterns and/or histone modifications. Collectively, we defined a subset of dDMPs exhibiting constant methylation changes from early to late pregnancy. The same epigenetic mechanisms involving methylation changes in cis-regulatory regions may have been adopted for human brain evolution and ontogeny.}, language = {en} } @article{DotterweichSchlegelmilchKelleretal.2016, author = {Dotterweich, Julia and Schlegelmilch, Katrin and Keller, Alexander and Geyer, Beate and Schneider, Doris and Zeck, Sabine and Tower, Robert J. J. and Ebert, Regina and Jakob, Franz and Sch{\"u}tze, Norbert}, title = {Contact of myeloma cells induces a characteristic transcriptome signature in skeletal precursor cells-implications for myeloma bone disease}, series = {Bone}, volume = {93}, journal = {Bone}, doi = {10.1016/j.bone.2016.08.006}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-186688}, pages = {155-166}, year = {2016}, abstract = {Physical interaction of skeletal precursors with multiple myeloma cells has been shown to suppress their osteogenic potential while favoring their tumor-promoting features. Although several transcriptome analyses of myeloma patient-derived mesenchymal stem cells have displayed differences compared to their healthy counterparts, these analyses insufficiently reflect the signatures mediated by tumor cell contact, vary due to different methodologies, and lack results in lineage-committed precursors. To determine tumor cell contact-mediated changes on skeletal precursors, we performed transcriptome analyses of mesenchymal stem cells and osteogenic precursor cells cultured in contact with the myeloma cell line INA-6. Comparative analyses confirmed dysregulation of genes which code for known disease-relevant factors and additionally revealed upregulation of genes that are associated with plasma cell homing, adhesion, osteoclastogenesis, and angiogenesis. Osteoclast-derived coupling factors, a dysregulated adipogenic potential, and an imbalance in favor of anti-anabolic factors may play a role in the hampered osteoblast differentiation potential of mesenchymal stem cells. Angiopoietin-Like 4 (ANGPTL4) was selected from a list of differentially expressed genes as a myeloma cell contact-dependent target in skeletal precursor cells which warranted further functional analyses. Adhesion assays with full-length ANGPTL4-coated plates revealed a potential role of this protein in INA6 cell attachment. This study expands knowledge of the myeloma cell contact-induced signature in the stromal compartment of myelomatous bones and thus offers potential targets that may allow detection and treatment of myeloma bone disease at an early stage.}, language = {en} } @article{HassounaOttWuestefeldetal.2016, author = {Hassouna, I. and Ott, C. and W{\"u}stefeld, L. and Offen, N. and Neher, R. A. and Mitkovski, M. and Winkler, D. and Sperling, S. and Fries, L. and Goebbels, S. and Vreja, I. C. and Hagemeyer, N. and Dittrich, M. and Rossetti, M. F. and Kr{\"o}hnert, K. and Hannke, K. and Boretius, S. and Zeug, A. and H{\"o}schen, C. and Dandekar, T. and Dere, E. and Neher, E. and Rizzoli, S. O. and Nave, K.-A. and Sir{\´e}n, A.-L. and Ehrenreich, H.}, title = {Revisiting adult neurogenesis and the role of erythropoietin for neuronal and oligodendroglial differentiation in the hippocampus}, series = {Molecular Psychiatry}, volume = {21}, journal = {Molecular Psychiatry}, number = {12}, doi = {10.1038/mp.2015.212}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-186669}, pages = {1752-1767}, year = {2016}, abstract = {Recombinant human erythropoietin (EPO) improves cognitive performance in neuropsychiatric diseases ranging from schizophrenia and multiple sclerosis to major depression and bipolar disease. This consistent EPO effect on cognition is independent of its role in hematopoiesis. The cellular mechanisms of action in brain, however, have remained unclear. Here we studied healthy young mice and observed that 3-week EPO administration was associated with an increased number of pyramidal neurons and oligodendrocytes in the hippocampus of similar to 20\%. Under constant cognitive challenge, neuron numbers remained elevated until >6 months of age. Surprisingly, this increase occurred in absence of altered cell proliferation or apoptosis. After feeding a \(^{15}\)N-leucine diet, we used nanoscopic secondary ion mass spectrometry, and found that in EPO-treated mice, an equivalent number of neurons was defined by elevated \(^{15}\)N-leucine incorporation. In EPO-treated NG2-Cre-ERT2 mice, we confirmed enhanced differentiation of preexisting oligodendrocyte precursors in the absence of elevated DNA synthesis. A corresponding analysis of the neuronal lineage awaits the identification of suitable neuronal markers. In cultured neurospheres, EPO reduced Sox9 and stimulated miR124, associated with advanced neuronal differentiation. We are discussing a resulting working model in which EPO drives the differentiation of non-dividing precursors in both (NG2+) oligodendroglial and neuronal lineages. As endogenous EPO expression is induced by brain injury, such a mechanism of adult neurogenesis may be relevant for central nervous system regeneration.}, language = {en} } @article{VazeHelfrichFoerster2016, author = {Vaze, Koustubh M. and Helfrich-F{\"o}rster, Charlotte}, title = {Drosophila ezoana uses an hour-glass or highly damped circadian clock for measuring night length and inducing diapause}, series = {Physiological Entomology}, volume = {41}, journal = {Physiological Entomology}, number = {4}, doi = {10.1111/phen.12165}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-204278}, pages = {378-389}, year = {2016}, abstract = {Insects inhabiting the temperate zones measure seasonal changes in day or night length to enter the overwintering diapause. Diapause induction occurs after the duration of the night exceeds a critical night length (CNL). Our understanding of the time measurement mechanisms is continuously evolving subsequent to B{\"u}nning's proposal that circadian systems play the clock role in photoperiodic time measurement (B{\"u}nning, 1936). Initially, the photoperiodic clocks were considered to be either based on circadian oscillators or on simple hour-glasses, depending on 'positive' or 'negative' responses in Nanda-Hamner and B{\"u}nsow experiments (Nanda \& Hammer, 1958; B{\"u}nsow, 1960). However, there are also species whose responses can be regarded as neither 'positive', nor as 'negative', such as the Northern Drosophila species Drosophila ezoana, which is investigated in the present study. In addition, modelling efforts show that the 'positive' and 'negative' Nanda-Hamner responses can also be provoked by circadian oscillators that are damped to different degrees: animals with highly sustained circadian clocks will respond 'positive' and those with heavily damped circadian clocks will respond 'negative'. In the present study, an experimental assay is proposed that characterizes the photoperiodic oscillators by determining the effects of non-24-h light/dark cycles (T-cycles) on critical night length. It is predicted that there is (i) a change in the critical night length as a function of T-cycle period in sustained-oscillator-based clocks and (ii) a fxed night-length measurement (i.e. no change in critical night length) in damped-oscillator-based clocks. Drosophila ezoana flies show a critical night length of approximately 7 h irrespective of T-cycle period, suggesting a damped-oscillator-based photoperiodic clock. The conclusion is strengthened by activity recordings revealing that the activity rhythm of D. ezoana flies also dampens in constant darkness.}, language = {en} } @article{DiaoMoussetHorsburghetal.2016, author = {Diao, Wenwen and Mousset, Mathilde and Horsburgh, Gavin J. and Vermeulen, Cornelis J. and Johannes, Frank and van de Zande, Louis and Ritchie, Michael G. and Schmitt, Thomas and Beukeboom, Leo W.}, title = {Quantitative Trait Locus Analysis of Mating Behavior and Male Sex Pheromones in Nasonia Wasps}, series = {G3: Genes Genomes Genetics}, volume = {6}, journal = {G3: Genes Genomes Genetics}, number = {6}, doi = {10.1534/g3.116.029074}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-165412}, pages = {1549-1562}, year = {2016}, abstract = {A major focus in speciation genetics is to identify the chromosomal regions and genes that reduce hybridization and gene flow. We investigated the genetic architecture of mating behavior in the parasitoid wasp species pair Nasonia giraulti and Nasonia oneida that exhibit strong prezygotic isolation. Behavioral analysis showed that N. oneida females had consistently higher latency times, and broke off the mating sequence more often in the mounting stage when confronted with N. giraulti males compared with males of their own species. N. oneida males produce a lower quantity of the long-range male sex pheromone (4R,5S)-5-hydroxy-4-decanolide (RS-HDL). Crosses between the two species yielded hybrid males with various pheromone quantities, and these males were used in mating trials with females of either species to measure female mate discrimination rates. A quantitative trait locus (QTL) analysis involving 475 recombinant hybrid males (F2), 2148 reciprocally backcrossed females (F3), and a linkage map of 52 equally spaced neutral single nucleotide polymorphism (SNP) markers plus SNPs in 40 candidate mating behavior genes revealed four QTL for male pheromone amount, depending on partner species. Our results demonstrate that the RS-HDL pheromone plays a role in the mating system of N. giraulti and N. oneida, but also that additional communication cues are involved in mate choice. No QTL were found for female mate discrimination, which points at a polygenic architecture of female choice with strong environmental influences.}, language = {en} } @article{KonteTerpitzPlemenitaš2016, author = {Konte, Tilen and Terpitz, Ulrich and Plemenitaš, Ana}, title = {Reconstruction of the High-Osmolarity Glycerol (HOG) Signaling Pathway from the Halophilic Fungus Wallemia ichthyophaga in Saccharomyces cerevisiae}, series = {Frontiers in Microbiology}, journal = {Frontiers in Microbiology}, doi = {10.3389/fmicb.2016.00901}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-165214}, year = {2016}, abstract = {The basidiomycetous fungus Wallemia ichthyophaga grows between 1.7 and 5.1 M NaCl and is the most halophilic eukaryote described to date. Like other fungi, W. ichthyophaga detects changes in environmental salinity mainly by the evolutionarily conserved high-osmolarity glycerol (HOG) signaling pathway. In Saccharomyces cerevisiae, the HOG pathway has been extensively studied in connection to osmotic regulation, with a valuable knock-out strain collection established. In the present study, we reconstructed the architecture of the HOG pathway of W. ichthyophaga in suitable S. cerevisiae knock-out strains, through heterologous expression of the W. ichthyophaga HOG pathway proteins. Compared to S. cerevisiae, where the Pbs2 (ScPbs2) kinase of the HOG pathway is activated via the SHO1 and SLN1 branches, the interactions between the W. ichthyophaga Pbs2 (WiPbs2) kinase and the W. ichthyophaga SHO1 branch orthologs are not conserved: as well as evidence of poor interactions between the WiSho1 Src-homology 3 (SH3) domain and the WiPbs2 proline-rich motif, the absence of a considerable part of the osmosensing apparatus in the genome of W. ichthyophaga suggests that the SHO1 branch components are not involved in HOG signaling in this halophilic fungus. In contrast, the conserved activation of WiPbs2 by the S. cerevisiae ScSsk2/ScSsk22 kinase and the sensitivity of W. ichthyophaga cells to fludioxonil, emphasize the significance of two-component (SLN1-like) signaling via Group III histidine kinase. Combined with protein modeling data, our study reveals conserved and non-conserved protein interactions in the HOG signaling pathway of W. ichthyophaga and therefore significantly improves the knowledge of hyperosmotic signal processing in this halophilic fungus.}, language = {en} } @article{HeldBerzHensgenetal.2016, author = {Held, Martina and Berz, Annuska and Hensgen, Ronja and Muenz, Thomas S. and Scholl, Christina and R{\"o}ssler, Wolfgang and Homberg, Uwe and Pfeiffer, Keram}, title = {Microglomerular Synaptic Complexes in the Sky-Compass Network of the Honeybee Connect Parallel Pathways from the Anterior Optic Tubercle to the Central Complex}, series = {Frontiers in Behavioral Neuroscience}, volume = {10}, journal = {Frontiers in Behavioral Neuroscience}, number = {186}, doi = {10.3389/fnbeh.2016.00186}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-165080}, year = {2016}, abstract = {While the ability of honeybees to navigate relying on sky-compass information has been investigated in a large number of behavioral studies, the underlying neuronal system has so far received less attention. The sky-compass pathway has recently been described from its input region, the dorsal rim area (DRA) of the compound eye, to the anterior optic tubercle (AOTU). The aim of this study is to reveal the connection from the AOTU to the central complex (CX). For this purpose, we investigated the anatomy of large microglomerular synaptic complexes in the medial and lateral bulbs (MBUs/LBUs) of the lateral complex (LX). The synaptic complexes are formed by tubercle-lateral accessory lobe neuron 1 (TuLAL1) neurons of the AOTU and GABAergic tangential neurons of the central body's (CB) lower division (TL neurons). Both TuLAL1 and TL neurons strongly resemble neurons forming these complexes in other insect species. We further investigated the ultrastructure of these synaptic complexes using transmission electron microscopy. We found that single large presynaptic terminals of TuLAL1 neurons enclose many small profiles (SPs) of TL neurons. The synaptic connections between these neurons are established by two types of synapses: divergent dyads and divergent tetrads. Our data support the assumption that these complexes are a highly conserved feature in the insect brain and play an important role in reliable signal transmission within the sky-compass pathway.}, language = {en} } @article{MenaDiegelmannWegeneretal.2016, author = {Mena, Wilson and Diegelmann, S{\"o}ren and Wegener, Christian and Ewer, John}, title = {Stereotyped responses of Drosophila peptidergic neuronal ensemble depend on downstream neuromodulators}, series = {eLife}, volume = {5}, journal = {eLife}, doi = {10.7554/eLife.19686}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-165003}, pages = {e19686}, year = {2016}, abstract = {Neuropeptides play a key role in the regulation of behaviors and physiological responses including alertness, social recognition, and hunger, yet, their mechanism of action is poorly understood. Here, we focus on the endocrine control ecdysis behavior, which is used by arthropods to shed their cuticle at the end of every molt. Ecdysis is triggered by ETH (Ecdysis triggering hormone), and we show that the response of peptidergic neurons that produce CCAP (crustacean cardioactive peptide), which are key targets of ETH and control the onset of ecdysis behavior, depends fundamentally on the actions of neuropeptides produced by other direct targets of ETH and released in a broad paracrine manner within the CNS; by autocrine influences from the CCAP neurons themselves; and by inhibitory actions mediated by GABA. Our findings provide insights into how this critical insect behavior is controlled and general principles for understanding how neuropeptides organize neuronal activity and behaviors.}, language = {en} } @article{DrakulićFeldhaarLisičićetal.2016, author = {Drakulić, Sanja and Feldhaar, Heike and Lisičić, Duje and Mioč, Mia and Cizelj, Ivan and Seiler, Michael and Spatz, Theresa and R{\"o}del, Mark-Oliver}, title = {Population-specific effects of developmental temperature on body condition and jumping performance of a widespread European frog}, series = {Ecology and Evolution}, volume = {6}, journal = {Ecology and Evolution}, number = {10}, doi = {10.1002/ece3.2113}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-164960}, pages = {3115-3128}, year = {2016}, abstract = {All physiological processes of ectotherms depend on environmental temperature. Thus, adaptation of physiological mechanisms to the thermal environments is important for achieving optimal performance and fitness. The European Common Frog, Rana temporaria, is widely distributed across different thermal habitats. This makes it an exceptional model for studying the adaptations to different thermal conditions. We raised tadpoles from Germany and Croatia at two constant temperature treatments (15°C, 20°C), and under natural temperature fluctuations (in outdoor treatments), and tested how different developmental temperatures affected developmental traits, that is, length of larval development, morphometrics, and body condition, as well as jumping performance of metamorphs. Our results revealed population-specific differences in developmental time, body condition, and jumping performance. Croatian frogs developed faster in all treatments, were heavier, in better body condition, and had longer hind limbs and better jumping abilities than German metamorphs. The populations further differed in thermal sensitivity of jumping performance. While metamorphs from Croatia increased their jumping performance with higher temperatures, German metamorphs reached their performance maximum at lower temperatures. These population-specific differences in common environments indicate local genetic adaptation, with southern populations being better adapted to higher temperatures than those from north of the Alps.}, language = {en} } @article{JonesFrucianoKelleretal.2016, author = {Jones, Julia C. and Fruciano, Carmelo and Keller, Anja and Schartl, Manfred and Meyer, Axel}, title = {Evolution of the elaborate male intromittent organ of Xiphophorus fishes}, series = {Ecology and Evolution}, volume = {6}, journal = {Ecology and Evolution}, number = {20}, doi = {10.1002/ece3.2396}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-164956}, pages = {7207-7220}, year = {2016}, abstract = {Internally fertilizing animals show a remarkable diversity in male genital morphology that is associated with sexual selection, and these traits are thought to be evolving particularly rapidly. Male fish in some internally fertilizing species have "gonopodia," highly modified anal fins that are putatively important for sexual selection. However, our understanding of the evolution of genital diversity remains incomplete. Contrary to the prediction that male genital traits evolve more rapidly than other traits, here we show that gonopodial traits and other nongonopodial traits exhibit similar evolutionary rates of trait change and also follow similar evolutionary models in an iconic genus of poeciliid fish (Xiphophorus spp.). Furthermore, we find that both mating and nonmating natural selection mechanisms are unlikely to be driving the diverse Xiphophorus gonopodial morphology. Putative holdfast features of the male genital organ do not appear to be influenced by water flow, a candidate selective force in aquatic habitats. Additionally, interspecific divergence in gonopodial morphology is not significantly higher between sympatric species, than between allopatric species, suggesting that male genitals have not undergone reproductive character displacement. Slower rates of evolution in gonopodial traits compared with a subset of putatively sexually selected nongenital traits suggest that different selection mechanisms may be acting on the different trait types. Further investigations of this elaborate trait are imperative to determine whether it is ultimately an important driver of speciation.}, language = {en} } @article{GattoSchulzeNielsen2016, author = {Gatto, Francesco and Schulze, Almut and Nielsen, Jens}, title = {Systematic Analysis Reveals that Cancer Mutations Converge on Deregulated Metabolism of Arachidonate and Xenobiotics}, series = {Cell Reports}, volume = {16}, journal = {Cell Reports}, number = {3}, doi = {10.1016/j.celrep.2016.06.038}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-164814}, pages = {878-895}, year = {2016}, abstract = {Mutations are the basis of the clonal evolution of most cancers. Nevertheless, a systematic analysis of whether mutations are selected in cancer because they lead to the deregulation of specific biological processes independent of the type of cancer is still lacking. In this study, we correlated the genome and transcriptome of 1,082 tumors. We found that nine commonly mutated genes correlated with substantial changes in gene expression, which primarily converged on metabolism. Further network analyses circumscribed the convergence to a network of reactions, termed AraX, that involves the glutathione- and oxygen-mediated metabolism of arachidonic acid and xenobiotics. In an independent cohort of 4,462 samples, all nine mutated genes were consistently correlated with the deregulation of AraX. Among all of the metabolic pathways, AraX deregulation represented the strongest predictor of patient survival. These findings suggest that oncogenic mutations drive a selection process that converges on the deregulation of the AraX network.}, language = {en} } @article{ShenChalopinGarciaetal.2016, author = {Shen, Yingjia and Chalopin, Domitille and Garcia, Tzintzuni and Boswell, Mikki and Boswell, William and Shiryev, Sergey A. and Agarwala, Richa and Volff, Jean-Nicolas and Postlethwait, John H. and Schartl, Manfred and Minx, Patrick and Warren, Wesley C. and Walter, Ronald B.}, title = {X. couchianus and X. hellerii genome models provide genomic variation insight among Xiphophorus species}, series = {BMC Genomics}, volume = {17}, journal = {BMC Genomics}, doi = {10.1186/s12864-015-2361-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-164582}, pages = {37}, year = {2016}, abstract = {Background Xiphophorus fishes are represented by 26 live-bearing species of tropical fish that express many attributes (e.g., viviparity, genetic and phenotypic variation, ecological adaptation, varied sexual developmental mechanisms, ability to produce fertile interspecies hybrids) that have made attractive research models for over 85 years. Use of various interspecies hybrids to investigate the genetics underlying spontaneous and induced tumorigenesis has resulted in the development and maintenance of pedigreed Xiphophorus lines specifically bred for research. The recent availability of the X. maculatus reference genome assembly now provides unprecedented opportunities for novel and exciting comparative research studies among Xiphophorus species. Results We present sequencing, assembly and annotation of two new genomes representing Xiphophorus couchianus and Xiphophorus hellerii. The final X. couchianus and X. hellerii assemblies have total sizes of 708 Mb and 734 Mb and correspond to 98 \% and 102 \% of the X. maculatus Jp 163 A genome size, respectively. The rates of single nucleotide change range from 1 per 52 bp to 1 per 69 bp among the three genomes and the impact of putatively damaging variants are presented. In addition, a survey of transposable elements allowed us to deduce an ancestral TE landscape, uncovered potential active TEs and document a recent burst of TEs during evolution of this genus. Conclusions Two new Xiphophorus genomes and their corresponding transcriptomes were efficiently assembled, the former using a novel guided assembly approach. Three assembled genome sequences within this single vertebrate order of new world live-bearing fishes will accelerate our understanding of relationship between environmental adaptation and genome evolution. In addition, these genome resources provide capability to determine allele specific gene regulation among interspecies hybrids produced by crossing any of the three species that are known to produce progeny predisposed to tumor development.}, language = {en} } @article{daCruzRodriguezCasuriagaSantinaqueetal.2016, author = {da Cruz, Irene and Rodr{\´i}guez-Casuriaga, Rosana and Santi{\~n}aque, Frederico F. and Far{\´i}as, Joaquina and Curti, Gianni and Capoano, Carlos A. and Folle, Gustavo A. and Benavente, Ricardo and Sotelo-Silveira, Jos{\´e} Roberto and Geisinger, Adriana}, title = {Transcriptome analysis of highly purified mouse spermatogenic cell populations: gene expression signatures switch from meiotic-to postmeiotic-related processes at pachytene stage}, series = {BMC Genomics}, volume = {17}, journal = {BMC Genomics}, doi = {10.1186/s12864-016-2618-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-164574}, pages = {294}, year = {2016}, abstract = {Background Spermatogenesis is a complex differentiation process that involves the successive and simultaneous execution of three different gene expression programs: mitotic proliferation of spermatogonia, meiosis, and spermiogenesis. Testicular cell heterogeneity has hindered its molecular analyses. Moreover, the characterization of short, poorly represented cell stages such as initial meiotic prophase ones (leptotene and zygotene) has remained elusive, despite their crucial importance for understanding the fundamentals of meiosis. Results We have developed a flow cytometry-based approach for obtaining highly pure stage-specific spermatogenic cell populations, including early meiotic prophase. Here we combined this methodology with next generation sequencing, which enabled the analysis of meiotic and postmeiotic gene expression signatures in mouse with unprecedented reliability. Interestingly, we found that a considerable number of genes involved in early as well as late meiotic processes are already on at early meiotic prophase, with a high proportion of them being expressed only for the short time lapse of lepto-zygotene stages. Besides, we observed a massive change in gene expression patterns during medium meiotic prophase (pachytene) when mostly genes related to spermiogenesis and sperm function are already turned on. This indicates that the transcriptional switch from meiosis to post-meiosis takes place very early, during meiotic prophase, thus disclosing a higher incidence of post-transcriptional regulation in spermatogenesis than previously reported. Moreover, we found that a good proportion of the differential gene expression in spermiogenesis corresponds to up-regulation of genes whose expression starts earlier, at pachytene stage; this includes transition protein-and protamine-coding genes, which have long been claimed to switch on during spermiogenesis. In addition, our results afford new insights concerning X chromosome meiotic inactivation and reactivation. Conclusions This work provides for the first time an overview of the time course for the massive onset and turning off of the meiotic and spermiogenic genetic programs. Importantly, our data represent a highly reliable information set about gene expression in pure testicular cell populations including early meiotic prophase, for further data mining towards the elucidation of the molecular bases of male reproduction in mammals.}, language = {en} } @article{DePalmaAbrahamczykAizenetal.2016, author = {De Palma, Adriana and Abrahamczyk, Stefan and Aizen, Marcelo A. and Albrecht, Matthias and Basset, Yves and Bates, Adam and Blake, Robin J. and Boutin, C{\´e}line and Bugter, Rob and Connop, Stuart and Cruz-L{\´o}pez, Leopoldo and Cunningham, Saul A. and Darvill, Ben and Diek{\"o}tter, Tim and Dorn, Silvia and Downing, Nicola and Entling, Martin H. and Farwig, Nina and Felicioli, Antonio and Fonte, Steven J. and Fowler, Robert and Franzen, Markus Franz{\´e}n and Goulson, Dave and Grass, Ingo and Hanley, Mick E. and Hendrix, Stephen D. and Herrmann, Farina and Herzog, Felix and Holzschuh, Andrea and Jauker, Birgit and Kessler, Michael and Knight, M. E. and Kruess, Andreas and Lavelle, Patrick and Le F{\´e}on, Violette and Lentini, Pia and Malone, Louise A. and Marshall, Jon and Mart{\´i}nez Pach{\´o}n, Eliana and McFrederick, Quinn S. and Morales, Carolina L. and Mudri-Stojnic, Sonja and Nates-Parra, Guiomar and Nilsson, Sven G. and {\"O}ckinger, Erik and Osgathorpe, Lynne and Parra-H, Alejandro and Peres, Carlos A. and Persson, Anna S. and Petanidou, Theodora and Poveda, Katja and Power, Eileen F. and Quaranta, Marino and Quintero, Carolina and Rader, Romina and Richards, Miriam H. and Roulston, T'ai and Rousseau, Laurent and Sadler, Jonathan P. and Samneg{\aa}rd, Ulrika and Schellhorn, Nancy A. and Sch{\"u}epp, Christof and Schweiger, Oliver and Smith-Pardo, Allan H. and Steffan-Dewenter, Ingolf and Stout, Jane C. and Tonietto, Rebecca K. and Tscharntke, Teja and Tylianakis, Jason M. and Verboven, Hans A. F. and Vergara, Carlos H. and Verhulst, Jort and Westphal, Catrin and Yoon, Hyung Joo and Purvis, Andy}, title = {Predicting bee community responses to land-use changes: Effects of geographic and taxonomic biases}, series = {Scientific Reports}, volume = {6}, journal = {Scientific Reports}, doi = {10.1038/srep31153}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167642}, pages = {31153}, year = {2016}, abstract = {Land-use change and intensification threaten bee populations worldwide, imperilling pollination services. Global models are needed to better characterise, project, and mitigate bees' responses to these human impacts. The available data are, however, geographically and taxonomically unrepresentative; most data are from North America and Western Europe, overrepresenting bumblebees and raising concerns that model results may not be generalizable to other regions and taxa. To assess whether the geographic and taxonomic biases of data could undermine effectiveness of models for conservation policy, we have collated from the published literature a global dataset of bee diversity at sites facing land-use change and intensification, and assess whether bee responses to these pressures vary across 11 regions (Western, Northern, Eastern and Southern Europe; North, Central and South America; Australia and New Zealand; South East Asia; Middle and Southern Africa) and between bumblebees and other bees. Our analyses highlight strong regionally-based responses of total abundance, species richness and Simpson's diversity to land use, caused by variation in the sensitivity of species and potentially in the nature of threats. These results suggest that global extrapolation of models based on geographically and taxonomically restricted data may underestimate the true uncertainty, increasing the risk of ecological surprises.}, language = {en} } @article{DeelemanReinholdMillerFloren2016, author = {Deeleman-Reinhold, Christa L. and Miller, Jeremy and Floren, Andreas}, title = {Depreissia decipiens, an enigmatic canopy spider from Borneo revisited (Araneae, Salticidae), with remarks on the distribution and diversity of canopy spiders in Sabah, Borneo}, series = {ZooKeys}, volume = {556}, journal = {ZooKeys}, doi = {10.3897/zookeys.556.6174}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-168342}, pages = {1-17}, year = {2016}, abstract = {Depreissia is a little known genus comprising two hymenopteran-mimicking species, one found in Central Africa and one in the north of Borneo. The male of D. decipiens is redescribed, the female is described for the first time. The carapace is elongated, dorsally flattened and rhombus-shaped, the rear of the thorax laterally depressed and transformed, with a pair of deep pits; the pedicel is almost as long as the abdomen. The male palp is unusual, characterized by the transverse deeply split membranous tegulum separating a ventral part which bears a sclerotized tegular apophysis and a large dagger-like retrodirected median apophysis. The female epigyne consists of one pair of large adjacent spermathecae and very long copulatory ducts arising posteriorly and rising laterally alongside the spermathecae continuing in several vertical and horizontal coils over the anterior surface. Relationships within the Salticidae are discussed and an affinity with the Cocalodinae is suggested. Arguments are provided for a hypothesis that D. decipiens is not ant-mimicking as was previously believed, but is a mimic of polistinine wasps. The species was found in the canopy in the Kinabalu area only, in primary and old secondary rainforest at 200-700 m.a.s.l. Overlap of canopy-dwelling spider species with those in the understorey are discussed and examples of species richness and endemism in the canopy are highlighted. Canopy fogging is a very efficient method of collecting for most arthropods. The canopy fauna adds an extra dimension to the known biodiversity of the tropical rainforest. In southeast Asia, canopy research has been neglected, inhibiting evaluation of comparative results of this canopy project with that from other regions. More use of fogging as a collecting method would greatly improve insight into the actual species richness and species distribution in general.}, language = {en} } @article{SchlinkertLudwigBataryetal.2016, author = {Schlinkert, Hella and Ludwig, Martin and Bat{\´a}ry, P{\´e}ter and Holzschuh, Andrea and Kov{\´a}cs-Hosty{\´a}nszki, Anik{\´o} and Tscharntke, Teja and Fischer, Christina}, title = {Forest specialist and generalist small mammals in forest edges and hedges}, series = {Wildlife Biology}, volume = {22}, journal = {Wildlife Biology}, number = {3}, doi = {10.2981/wlb.00176}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-168333}, pages = {86-94}, year = {2016}, abstract = {Agricultural intensification often leads to fragmentation of natural habitats, such as forests, and thereby negatively affects forest specialist species. However, human introduced habitats, such as hedges, may counteract negative effects of forest fragmentation and increase dispersal, particularly of forest specialists. We studied effects of habitat type (forest edge versus hedge) and hedge isolation from forests (connected versus isolated hedge) in agricultural landscapes on abundance, species richness and community composition of mice, voles and shrews in forest edges and hedges. Simultaneously to these effects of forest edge/hedge type we analysed impacts of habitat structure, namely percentage of bare ground and forest edge/hedge width, on abundance, species richness and community composition of small mammals. Total abundance and forest specialist abundance (both driven by the most abundant species Myodes glareolus, bank vole) were higher in forest edges than in hedges, while hedge isolation had no effect. In contrast, abundance of habitat generalists was higher in isolated compared to connected hedges, with no effect of habitat type (forest edge versus hedge). Species richness as well as abundance of the most abundant habitat generalist Sorex araneus (common shrew), were not affected by habitat type or hedge isolation. Decreasing percentage of bare ground and increasing forest edge/hedge width was associated with increased abundance of forest specialists, while habitat structure was unrelated to species richness or abundance of any other group. Community composition was driven by forest specialists, which exceeded habitat generalist abundance in forest edges and connected hedges, while abundances were similar to each other in isolated hedges. Our results show that small mammal forest specialists prefer forest edges as habitats over hedges, while habitat generalists are able to use unoccupied ecological niches in isolated hedges. Consequently even isolated hedges can be marginal habitats for forest specialists and habitat generalists and thereby may increase regional farmland biodiversity.}, language = {en} } @article{BiscottiGerdolCanapaetal.2016, author = {Biscotti, Maria Assunta and Gerdol, Marco and Canapa, Adriana and Forconi, Mariko and Olmo, Ettore and Pallavicini, Alberto and Barucca, Marco and Schartl, Manfred}, title = {The Lungfish Transcriptome: A Glimpse into Molecular Evolution Events at the Transition from Water to Land}, series = {Scientific Reports}, volume = {6}, journal = {Scientific Reports}, number = {21571}, doi = {10.1038/srep21571}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167753}, year = {2016}, abstract = {Lungfish and coelacanths are the only living sarcopterygian fish. The phylogenetic relationship of lungfish to the last common ancestor of tetrapods and their close morphological similarity to their fossil ancestors make this species uniquely interesting. However their genome size, the largest among vertebrates, is hampering the generation of a whole genome sequence. To provide a partial solution to the problem, a high-coverage lungfish reference transcriptome was generated and assembled. The present findings indicate that lungfish, not coelacanths, are the closest relatives to land-adapted vertebrates. Whereas protein-coding genes evolve at a very slow rate, possibly reflecting a "living fossil" status, transposable elements appear to be active and show high diversity, suggesting a role for them in the remarkable expansion of the lungfish genome. Analyses of single genes and gene families documented changes connected to the water to land transition and demonstrated the value of the lungfish reference transcriptome for comparative studies of vertebrate evolution.}, language = {en} } @article{PfeifferKruegerMaierhoferetal.2016, author = {Pfeiffer, Susanne and Kr{\"u}ger, Jacqueline and Maierhofer, Anna and B{\"o}ttcher, Yvonne and Kl{\"o}ting, Nora and El Hajj, Nady and Schleinitz, Dorit and Sch{\"o}n, Michael R. and Dietrich, Arne and Fasshauer, Mathias and Lohmann, Tobias and Dreßler, Miriam and Stumvoll, Michael and Haaf, Thomas and Bl{\"u}her, Matthias and Kovacs, Peter}, title = {Hypoxia-inducible factor 3A gene expression and methylation in adipose tissue is related to adipose tissue dysfunction}, series = {Scientific Reports}, volume = {6}, journal = {Scientific Reports}, number = {27969}, doi = {10.1038/srep27969}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167662}, year = {2016}, abstract = {Recently, a genome-wide analysis identified DNA methylation of the HIF3A (hypoxia-inducible factor 3A) as strongest correlate of BMI. Here we tested the hypothesis that HIF3A mRNA expression and CpG-sites methylation in adipose tissue (AT) and genetic variants in HIF3A are related to parameters of AT distribution and function. In paired samples of subcutaneous AT (SAT) and visceral AT (VAT) from 603 individuals, we measured HIF3A mRNA expression and analyzed its correlation with obesity and related traits. In subgroups of individuals, we investigated the effects on HIF3A genetic variants on its AT expression (N = 603) and methylation of CpG-sites (N = 87). HIF3A expression was significantly higher in SAT compared to VAT and correlated with obesity and parameters of AT dysfunction (including CRP and leucocytes count). HIF3A methylation at cg22891070 was significantly higher in VAT compared to SAT and correlated with BMI, abdominal SAT and VAT area. Rs8102595 showed a nominal significant association with AT HIF3A methylation levels as well as with obesity and fat distribution. HIF3A expression and methylation in AT are fat depot specific, related to obesity and AT dysfunction. Our data support the hypothesis that HIF pathways may play an important role in the development of AT dysfunction in obesity.}, language = {en} } @article{JahnMarkertRyuetal.2016, author = {Jahn, Martin T. and Markert, Sebastian M. and Ryu, Taewoo and Ravasi, Timothy and Stigloher, Christian and Hentschel, Ute and Moitinho-Silva, Lucas}, title = {Shedding light on cell compartmentation in the candidate phylum Poribacteria by high resolution visualisation and transcriptional profiling}, series = {Scientific Reports}, volume = {6}, journal = {Scientific Reports}, number = {35860}, doi = {10.1038/srep35860}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167513}, year = {2016}, abstract = {Assigning functions to uncultivated environmental microorganisms continues to be a challenging endeavour. Here, we present a new microscopy protocol for fluorescence in situ hybridisation-correlative light and electron microscopy (FISH-CLEM) that enabled, to our knowledge for the first time, the identification of single cells within their complex microenvironment at electron microscopy resolution. Members of the candidate phylum Poribacteria, common and uncultivated symbionts of marine sponges, were used towards this goal. Cellular 3D reconstructions revealed bipolar, spherical granules of low electron density, which likely represent carbon reserves. Poribacterial activity profiles were retrieved from prokaryotic enriched sponge metatranscriptomes using simulation-based optimised mapping. We observed high transcriptional activity for proteins related to bacterial microcompartments (BMC) and we resolved their subcellular localisation by combining FISH-CLEM with immunohistochemistry (IHC) on ultra-thin sponge tissue sections. In terms of functional relevance, we propose that the BMC-A region may be involved in 1,2-propanediol degradation. The FISH-IHC-CLEM approach was proven an effective toolkit to combine -omics approaches with functional studies and it should be widely applicable in environmental microbiology.}, language = {en} } @article{WeisschuhMayerStrometal.2016, author = {Weisschuh, Nicole and Mayer, Anja K. and Strom, Tim M. and Kohl, Susanne and Gl{\"o}ckle, Nicola and Schubach, Max and Andreasson, Sten and Bernd, Antje and Birch, David G. and Hamel, Christian P. and Heckenlively, John R. and Jacobson, Samuel G. and Kamme, Christina and Kellner, Ulrich and Kunstmann, Erdmute and Maffei, Pietro and Reiff, Charlotte M. and Rohrschneider, Klaus and Rosenberg, Thomas and Rudolph, G{\"u}nther and V{\´a}mos, Rita and Vars{\´a}nyi, Bal{\´a}zs and Weleber, Richard G. and Wissinger, Bernd}, title = {Mutation Detection in Patients with Retinal Dystrophies Using Targeted Next Generation Sequencing}, series = {PLoS ONE}, volume = {11}, journal = {PLoS ONE}, number = {1}, doi = {10.1371/journal.pone.0145951}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167398}, pages = {e0145951}, year = {2016}, abstract = {Retinal dystrophies (RD) constitute a group of blinding diseases that are characterized by clinical variability and pronounced genetic heterogeneity. The different nonsyndromic and syndromic forms of RD can be attributed to mutations in more than 200 genes. Consequently, next generation sequencing (NGS) technologies are among the most promising approaches to identify mutations in RD. We screened a large cohort of patients comprising 89 independent cases and families with various subforms of RD applying different NGS platforms. While mutation screening in 50 cases was performed using a RD gene capture panel, 47 cases were analyzed using whole exome sequencing. One family was analyzed using whole genome sequencing. A detection rate of 61\% was achieved including mutations in 34 known and two novel RD genes. A total of 69 distinct mutations were identified, including 39 novel mutations. Notably, genetic findings in several families were not consistent with the initial clinical diagnosis. Clinical reassessment resulted in refinement of the clinical diagnosis in some of these families and confirmed the broad clinical spectrum associated with mutations in RD genes.}, language = {en} } @article{ThormannAhrensArmijosetal.2016, author = {Thormann, Birthe and Ahrens, Dirk and Armijos, Diego Mar{\´i}n and Peters, Marcell K. and Wagner, Thomas and W{\"a}gele, Johann W.}, title = {Exploring the Leaf Beetle Fauna (Coleoptera: Chrysomelidae) of an Ecuadorian Mountain Forest Using DNA Barcoding}, series = {PLoS ONE}, volume = {11}, journal = {PLoS ONE}, number = {2}, doi = {10.1371/journal.pone.0148268}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167253}, pages = {e0148268}, year = {2016}, abstract = {Background Tropical mountain forests are hotspots of biodiversity hosting a huge but little known diversity of insects that is endangered by habitat destruction and climate change. Therefore, rapid assessment approaches of insect diversity are urgently needed to complement slower traditional taxonomic approaches. We empirically compare different DNA-based species delimitation approaches for a rapid biodiversity assessment of hyperdiverse leaf beetle assemblages along an elevational gradient in southern Ecuador and explore their effect on species richness estimates. Methodology/Principal Findings Based on a COI barcode data set of 674 leaf beetle specimens (Coleoptera: Chrysomelidae) of 266 morphospecies from three sample sites in the Podocarpus National Park, we employed statistical parsimony analysis, distance-based clustering, GMYC- and PTP-modelling to delimit species-like units and compared them to morphology-based (parataxonomic) species identifications. The four different approaches for DNA-based species delimitation revealed highly similar numbers of molecular operational taxonomic units (MOTUs) (n = 284-289). Estimated total species richness was considerably higher than the sampled amount, 414 for morphospecies (Chao2) and 469-481 for the different MOTU types. Assemblages at different elevational levels (1000 vs. 2000 m) had similar species numbers but a very distinct species composition for all delimitation methods. Most species were found only at one elevation while this turnover pattern was even more pronounced for DNA-based delimitation. Conclusions/Significance Given the high congruence of DNA-based delimitation results, probably due to the sampling structure, our study suggests that when applied to species communities on a regionally limited level with high amount of rare species (i.e. ~50\% singletons), the choice of species delimitation method can be of minor relevance for assessing species numbers and turnover in tropical insect communities. Therefore, DNA-based species delimitation is confirmed as a valuable tool for evaluating biodiversity of hyperdiverse insect communities, especially when exact taxonomic identifications are missing.}, language = {en} } @article{Hoelldobler2016, author = {H{\"o}lldobler, Bert}, title = {Queen Specific Exocrine Glands in Legionary Ants and Their Possible Function in Sexual Selection}, series = {PLoS ONE}, volume = {11}, journal = {PLoS ONE}, number = {3}, doi = {10.1371/journal.pone.0151604}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167057}, pages = {e0151604}, year = {2016}, abstract = {The colonies of army ants and some other legionary ant species have single, permanently wingless queens with massive post petioles and large gasters. Such highly modified queens are called dichthadiigynes. This paper presents the unusually rich exocrine gland endowment of dichthadiigynes, which is not found in queens of other ant species. It has been suggested these kinds of glands produce secretions that attract and maintain worker retinues around queens, especially during migration. However, large worker retinues also occur in non-legionary species whose queens do not have such an exuberance of exocrine glands. We argue and present evidence in support of our previously proposed hypothesis that the enormous outfit of exocrine glands found in dichthadiigynes is due to sexual selection mediated by workers as the main selecting agents}, language = {en} } @article{VogtmannHuaZelleretal.2016, author = {Vogtmann, Emily and Hua, Xing and Zeller, Georg and Sunagawa, Shinichi and Voigt, Anita Y. and Hercog, Rajna and Goedert, James J. and Shi, Jianxin and Bork, Peer and Sinha, Rashmi}, title = {Colorectal Cancer and the Human Gut Microbiome: Reproducibility with Whole-Genome Shotgun Sequencing}, series = {PLoS ONE}, volume = {11}, journal = {PLoS ONE}, number = {5}, doi = {10.1371/journal.pone.0155362}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-166904}, pages = {e0155362}, year = {2016}, abstract = {Accumulating evidence indicates that the gut microbiota affects colorectal cancer development, but previous studies have varied in population, technical methods, and associations with cancer. Understanding these variations is needed for comparisons and for potential pooling across studies. Therefore, we performed whole-genome shotgun sequencing on fecal samples from 52 pre-treatment colorectal cancer cases and 52 matched controls from Washington, DC. We compared findings from a previously published 16S rRNA study to the metagenomics-derived taxonomy within the same population. In addition, metagenome-predicted genes, modules, and pathways in the Washington, DC cases and controls were compared to cases and controls recruited in France whose specimens were processed using the same platform. Associations between the presence of fecal Fusobacteria, Fusobacterium, and Porphyromonas with colorectal cancer detected by 16S rRNA were reproduced by metagenomics, whereas higher relative abundance of Clostridia in cancer cases based on 16S rRNA was merely borderline based on metagenomics. This demonstrated that within the same sample set, most, but not all taxonomic associations were seen with both methods. Considering significant cancer associations with the relative abundance of genes, modules, and pathways in a recently published French metagenomics dataset, statistically significant associations in the Washington, DC population were detected for four out of 10 genes, three out of nine modules, and seven out of 17 pathways. In total, colorectal cancer status in the Washington, DC study was associated with 39\% of the metagenome-predicted genes, modules, and pathways identified in the French study. More within and between population comparisons are needed to identify sources of variation and disease associations that can be reproduced despite these variations. Future studies should have larger sample sizes or pool data across studies to have sufficient power to detect associations that are reproducible and significant after correction for multiple testing.}, language = {en} } @article{HeurichZeisKuechenhoffetal.2016, author = {Heurich, Marco and Zeis, Klara and K{\"u}chenhoff, Helmut and M{\"u}ller, J{\"o}rg and Belotti, Elisa and Bufka, Luděk and Woelfing, Benno}, title = {Selective Predation of a Stalking Predator on Ungulate Prey}, series = {PLoS ONE}, volume = {11}, journal = {PLoS ONE}, number = {8}, doi = {10.1371/journal.pone.0158449}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-166827}, pages = {e0158449}, year = {2016}, abstract = {Prey selection is a key factor shaping animal populations and evolutionary dynamics. An optimal forager should target prey that offers the highest benefits in terms of energy content at the lowest costs. Predators are therefore expected to select for prey of optimal size. Stalking predators do not pursue their prey long, which may lead to a more random choice of prey individuals. Due to difficulties in assessing the composition of available prey populations, data on prey selection of stalking carnivores are still scarce. We show how the stalking predator Eurasian lynx (Lynx lynx) selects prey individuals based on species identity, age, sex and individual behaviour. To address the difficulties in assessing prey population structure, we confirm inferred selection patterns by using two independent data sets: (1) data of 387 documented kills of radio-collared lynx were compared to the prey population structure retrieved from systematic camera trapping using Manly's standardized selection ratio alpha and (2) data on 120 radio-collared roe deer were analysed using a Cox proportional hazards model. Among the larger red deer prey, lynx selected against adult males—the largest and potentially most dangerous prey individuals. In roe deer lynx preyed selectively on males and did not select for a specific age class. Activity during high risk periods reduced the risk of falling victim to a lynx attack. Our results suggest that the stalking predator lynx actively selects for size, while prey behaviour induces selection by encounter and stalking success rates.}, language = {en} } @article{DreschersSauppHornefetal.2016, author = {Dreschers, Stephan and Saupp, Peter and Hornef, Mathias and Prehn, Andrea and Platen, Christopher and Morschh{\"a}user, Joachim and Orlikowsky, Thorsten W.}, title = {Reduced PICD in Monocytes Mounts Altered Neonate Immune Response to Candida albicans}, series = {PLoS ONE}, volume = {11}, journal = {PLoS ONE}, number = {11}, doi = {10.1371/journal.pone.0166648}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-166778}, pages = {e0166648}, year = {2016}, abstract = {Background Invasive fungal infections with Candida albicans (C. albicans) occur frequently in extremely low birthweight (ELBW) infants and are associated with poor outcome. Phagocytosis of C.albicans initializes apoptosis in monocytes (phagocytosis induced cell death, PICD). PICD is reduced in neonatal cord blood monocytes (CBMO). Hypothesis Phagocytosis of C. albicans causes PICD which differs between neonatal monocytes (CBMO) and adult peripheral blood monocytes (PBMO) due to lower stimulation of TLR-mediated immune responses. Methods The ability to phagocytose C. albicans, expression of TLRs, the induction of apoptosis (assessment of sub-G1 and nick-strand breaks) were analyzed by FACS. TLR signalling was induced by agonists such as lipopolysaccharide (LPS), Pam3Cys, FSL-1 and Zymosan and blocked (neutralizing TLR2 antibodies and MYD88 inhibitor). Results Phagocytic indices of PBMO and CBMO were similar. Following stimulation with agonists and C. albicans induced up-regulation of TLR2 and consecutive phosphorylation of MAP kinase P38 and expression of TNF-α, which were stronger on PBMO compared to CBMO (p < 0.005). Downstream, TLR2 signalling initiated caspase-3-dependent PICD which was found reduced in CBMO (p < 0.05 vs PBMO). Conclusion Our data suggest direct involvement of TLR2-signalling in C. albicans-induced PICD in monocytes and an alteration of this pathway in CBMO.}, language = {en} } @article{XuHeKaiseretal.2016, author = {Xu, Li and He, Jianzheng and Kaiser, Andrea and Gr{\"a}ber, Nikolas and Schl{\"a}ger, Laura and Ritze, Yvonne and Scholz, Henrike}, title = {A Single Pair of Serotonergic Neurons Counteracts Serotonergic Inhibition of Ethanol Attraction in Drosophila}, series = {PLoS ONE}, volume = {11}, journal = {PLoS ONE}, number = {12}, doi = {10.1371/journal.pone.0167518}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-166762}, pages = {e0167518}, year = {2016}, abstract = {Attraction to ethanol is common in both flies and humans, but the neuromodulatory mechanisms underlying this innate attraction are not well understood. Here, we dissect the function of the key regulator of serotonin signaling—the serotonin transporter-in innate olfactory attraction to ethanol in Drosophila melanogaster. We generated a mutated version of the serotonin transporter that prolongs serotonin signaling in the synaptic cleft and is targeted via the Gal4 system to different sets of serotonergic neurons. We identified four serotonergic neurons that inhibit the olfactory attraction to ethanol and two additional neurons that counteract this inhibition by strengthening olfactory information. Our results reveal that compensation can occur on the circuit level and that serotonin has a bidirectional function in modulating the innate attraction to ethanol. Given the evolutionarily conserved nature of the serotonin transporter and serotonin, the bidirectional serotonergic mechanisms delineate a basic principle for how random behavior is switched into targeted approach behavior.}, language = {en} } @article{KuenstnerHoffmannFraseretal.2016, author = {K{\"u}nstner, Axel and Hoffmann, Margarete and Fraser, Bonnie A. and Kottler, Verena A. and Sharma, Eshita and Weigel, Detlef and Dreyer, Christine}, title = {The Genome of the Trinidadian Guppy, Poecilia reticulata, and Variation in the Guanapo Population}, series = {PLoS ONE}, volume = {11}, journal = {PLoS ONE}, number = {12}, doi = {10.1371/journal.pone.0169087}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-166755}, pages = {e0169087}, year = {2016}, abstract = {For over a century, the live bearing guppy, Poecilia reticulata, has been used to study sexual selection as well as local adaptation. Natural guppy populations differ in many traits that are of intuitively adaptive significance such as ornamentation, age at maturity, brood size and body shape. Water depth, light supply, food resources and predation regime shape these traits, and barrier waterfalls often separate contrasting environments in the same river. We have assembled and annotated the genome of an inbred single female from a high-predation site in the Guanapo drainage. The final assembly comprises 731.6 Mb with a scaffold N50 of 5.3 MB. Scaffolds were mapped to linkage groups, placing 95\% of the genome assembly on the 22 autosomes and the X-chromosome. To investigate genetic variation in the population used for the genome assembly, we sequenced 10 wild caught male individuals. The identified 5 million SNPs correspond to an average nucleotide diversity (π) of 0.0025. The genome assembly and SNP map provide a rich resource for investigating adaptation to different predation regimes. In addition, comparisons with the genomes of other Poeciliid species, which differ greatly in mechanisms of sex determination and maternal resource allocation, as well as comparisons to other teleost genera can begin to reveal how live bearing evolved in teleost fish.}, language = {en} } @article{VendelovadeLimaLorenzattoetal.2016, author = {Vendelova, Emilia and de Lima, Jeferson Camargo and Lorenzatto, Karina Rodrigues and Monteiro, Karina Mariante and Mueller, Thomas and Veepaschit, Jyotishman and Grimm, Clemens and Brehm, Klaus and Hrčkov{\´a}, Gabriela and Lutz, Manfred B. and Ferreira, Henrique B. and Nono, Justin Komguep}, title = {Proteomic Analysis of Excretory-Secretory Products of Mesocestoides corti Metacestodes Reveals Potential Suppressors of Dendritic Cell Functions}, series = {PLoS Neglected Tropical Diseases}, volume = {10}, journal = {PLoS Neglected Tropical Diseases}, number = {10}, doi = {10.1371/journal.pntd.0005061}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-166742}, pages = {e0005061}, year = {2016}, abstract = {Accumulating evidences have assigned a central role to parasite-derived proteins in immunomodulation. Here, we report on the proteomic identification and characterization of immunomodulatory excretory-secretory (ES) products from the metacestode larva (tetrathyridium) of the tapeworm Mesocestoides corti (syn. M. vogae). We demonstrate that ES products but not larval homogenates inhibit the stimuli-driven release of the pro-inflammatory, Th1-inducing cytokine IL-12p70 by murine bone marrow-derived dendritic cells (BMDCs). Within the ES fraction, we biochemically narrowed down the immunosuppressive activity to glycoproteins since active components were lipid-free, but sensitive to heat- and carbohydrate-treatment. Finally, using bioassay-guided chromatographic analyses assisted by comparative proteomics of active and inactive fractions of the ES products, we defined a comprehensive list of candidate proteins released by M. corti tetrathyridia as potential suppressors of DC functions. Our study provides a comprehensive library of somatic and ES products and highlight some candidate parasite factors that might drive the subversion of DC functions to facilitate the persistence of M. corti tetrathyridia in their hosts.}, language = {en} } @article{WidmannArtingerBiesingeretal.2016, author = {Widmann, Annekathrin and Artinger, Marc and Biesinger, Lukas and Boepple, Kathrin and Peters, Christina and Schlechter, Jana and Selcho, Mareike and Thum, Andreas S.}, title = {Genetic Dissection of Aversive Associative Olfactory Learning and Memory in Drosophila Larvae}, series = {PLoS Genetics}, volume = {12}, journal = {PLoS Genetics}, number = {10}, doi = {10.1371/journal.pgen.1006378}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-166672}, pages = {e1006378}, year = {2016}, abstract = {Memory formation is a highly complex and dynamic process. It consists of different phases, which depend on various neuronal and molecular mechanisms. In adult Drosophila it was shown that memory formation after aversive Pavlovian conditioning includes—besides other forms—a labile short-term component that consolidates within hours to a longer-lasting memory. Accordingly, memory formation requires the timely controlled action of different neuronal circuits, neurotransmitters, neuromodulators and molecules that were initially identified by classical forward genetic approaches. Compared to adult Drosophila, memory formation was only sporadically analyzed at its larval stage. Here we deconstruct the larval mnemonic organization after aversive olfactory conditioning. We show that after odor-high salt conditioning larvae form two parallel memory phases; a short lasting component that depends on cyclic adenosine 3'5'-monophosphate (cAMP) signaling and synapsin gene function. In addition, we show for the first time for Drosophila larvae an anesthesia resistant component, which relies on radish and bruchpilot gene function, protein kinase C activity, requires presynaptic output of mushroom body Kenyon cells and dopamine function. Given the numerical simplicity of the larval nervous system this work offers a unique prospect for studying memory formation of defined specifications, at full-brain scope with single-cell, and single-synapse resolution.}, language = {en} } @article{SchwarzTamuriKultysetal.2016, author = {Schwarz, Roland F. and Tamuri, Asif U. and Kultys, Marek and King, James and Godwin, James and Florescu, Ana M. and Schultz, J{\"o}rg and Goldman, Nick}, title = {ALVIS: interactive non-aggregative visualization and explorative analysis of multiple sequence alignments}, series = {Nucleic Acids Research}, volume = {44}, journal = {Nucleic Acids Research}, number = {8}, doi = {10.1093/nar/gkw022}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-166374}, pages = {e77}, year = {2016}, abstract = {Sequence Logos and its variants are the most commonly used method for visualization of multiple sequence alignments (MSAs) and sequence motifs. They provide consensus-based summaries of the sequences in the alignment. Consequently, individual sequences cannot be identified in the visualization and covariant sites are not easily discernible. We recently proposed Sequence Bundles, a motif visualization technique that maintains a one-to-one relationship between sequences and their graphical representation and visualizes covariant sites. We here present Alvis, an open-source platform for the joint explorative analysis of MSAs and phylogenetic trees, employing Sequence Bundles as its main visualization method. Alvis combines the power of the visualization method with an interactive toolkit allowing detection of covariant sites, annotation of trees with synapomorphies and homoplasies, and motif detection. It also offers numerical analysis functionality, such as dimension reduction and classification. Alvis is user-friendly, highly customizable and can export results in publication-quality figures. It is available as a full-featured standalone version (http://www.bitbucket.org/rfs/alvis) and its Sequence Bundles visualization module is further available as a web application (http://science-practice.com/projects/sequence-bundles).}, language = {en} } @article{LetunicBork2016, author = {Letunic, Ivica and Bork, Peer}, title = {Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees}, series = {Nucleic Acids Research}, volume = {44}, journal = {Nucleic Acids Research}, number = {W1}, doi = {10.1093/nar/gkw290}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-166181}, pages = {W242-W245}, year = {2016}, abstract = {Interactive Tree Of Life (http://itol.embl.de) is a web-based tool for the display, manipulation and annotation of phylogenetic trees. It is freely available and open to everyone. The current version was completely redesigned and rewritten, utilizing current web technologies for speedy and streamlined processing. Numerous new features were introduced and several new data types are now supported. Trees with up to 100,000 leaves can now be efficiently displayed. Full interactive control over precise positioning of various annotation features and an unlimited number of datasets allow the easy creation of complex tree visualizations. iTOL 3 is the first tool which supports direct visualization of the recently proposed phylogenetic placements format. Finally, iTOL's account system has been redesigned to simplify the management of trees in user-defined workspaces and projects, as it is heavily used and currently handles already more than 500,000 trees from more than 10,000 individual users.}, language = {en} } @article{BenoitAdelmanReinhardtetal.2016, author = {Benoit, Joshua B. and Adelman, Zach N. and Reinhardt, Klaus and Dolan, Amanda and Poelchau, Monica and Jennings, Emily C. and Szuter, Elise M. and Hagan, Richard W. and Gujar, Hemant and Shukla, Jayendra Nath and Zhu, Fang and Mohan, M. and Nelson, David R. and Rosendale, Andrew J. and Derst, Christian and Resnik, Valentina and Wernig, Sebastian and Menegazzi, Pamela and Wegener, Christian and Peschel, Nicolai and Hendershot, Jacob M. and Blenau, Wolfgang and Predel, Reinhard and Johnston, Paul R. and Ioannidis, Panagiotis and Waterhouse, Robert M. and Nauen, Ralf and Schorn, Corinna and Ott, Mark-Christoph and Maiwald, Frank and Johnston, J. Spencer and Gondhalekar, Ameya D. and Scharf, Michael E. and Raje, Kapil R. and Hottel, Benjamin A. and Armis{\´e}n, David and Crumi{\`e}re, Antonin Jean Johan and Refki, Peter Nagui and Santos, Maria Emilia and Sghaier, Essia and Viala, S{\`e}verine and Khila, Abderrahman and Ahn, Seung-Joon and Childers, Christopher and Lee, Chien-Yueh and Lin, Han and Hughes, Daniel S.T. and Duncan, Elizabeth J. and Murali, Shwetha C. and Qu, Jiaxin and Dugan, Shannon and Lee, Sandra L. and Chao, Hsu and Dinh, Huyen and Han, Yi and Doddapaneni, Harshavardhan and Worley, Kim C. and Muzny, Donna M. and Wheeler, David and Panfilio, Kristen A. and Jentzsch, Iris M. Vargas and Jentzsch, IMV and Vargo, Edward L. and Booth, Warren and Friedrich, Markus and Weirauch, Matthew T. and Anderson, Michelle A.E. and Jones, Jeffery W. and Mittapalli, Omprakash and Zhao, Chaoyang and Zhou, Jing-Jiang and Evans, Jay D. and Attardo, Geoffrey M. and Robertson, Hugh M. and Zdobnov, Evgeny M. and Ribeiro, Jose M.C. and Gibbs, Richard A. and Werren, John H. and Palli, Subba R. and Schal, Coby and Richards, Stephen}, title = {Unique features of a global human ectoparasite identified through sequencing of the bed bug genome}, series = {Nature Communications}, volume = {7}, journal = {Nature Communications}, number = {10165}, doi = {10.1038/ncomms10165}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-166221}, year = {2016}, abstract = {The bed bug, Cimex lectularius, has re-established itself as a ubiquitous human ectoparasite throughout much of the world during the past two decades. This global resurgence is likely linked to increased international travel and commerce in addition to widespread insecticide resistance. Analyses of the C. lectularius sequenced genome (650 Mb) and 14,220 predicted protein-coding genes provide a comprehensive representation of genes that are linked to traumatic insemination, a reduced chemosensory repertoire of genes related to obligate hematophagy, host-symbiont interactions, and several mechanisms of insecticide resistance. In addition, we document the presence of multiple putative lateral gene transfer events. Genome sequencing and annotation establish a solid foundation for future research on mechanisms of insecticide resistance, human-bed bug and symbiont-bed bug associations, and unique features of bed bug biology that contribute to the unprecedented success of C. lectularius as a human ectoparasite.}, language = {en} } @article{ZhuShabalaCuinetal.2016, author = {Zhu, Min and Shabala, Lana and Cuin, Tracey A and Huang, Xin and Zhou, Meixue and Munns, Rana and Shabala, Sergey}, title = {Nax loci affect SOS1-like Na\(^{+}\)/H\(^{+}\) exchanger expression and activity in wheat}, series = {Journal of Experimental Botany}, volume = {67}, journal = {Journal of Experimental Botany}, number = {3}, doi = {10.1093/jxb/erv493}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-150236}, pages = {835-844}, year = {2016}, abstract = {Salinity stress tolerance in durum wheat is strongly associated with a plant's ability to control Na\(^{+}\) delivery to the shoot. Two loci, termed Nax1 and Nax2, were recently identified as being critical for this process and the sodium transporters HKT1;4 and HKT1;5 were identified as the respective candidate genes. These transporters retrieve Na\(^{+}\) from the xylem, thus limiting the rates of Na\(^{+}\) transport from the root to the shoot. In this work, we show that the Nax loci also affect activity and expression levels of the SOS1-like Na\(^{+}\)/H\(^{+}\) exchanger in both root cortical and stelar tissues. Net Na\(^{+}\) efflux measured in isolated steles from salt-treated plants, using the non-invasive ion flux measuring MIFE technique, decreased in the sequence: Tamaroi (parental line)>Nax1=Nax2>Nax1:Nax2 lines. This efflux was sensitive to amiloride (a known inhibitor of the Na\(^{+}\)/H\(^{+}\) exchanger) and was mirrored by net H\(^{+}\) flux changes. TdSOS1 relative transcript levels were 6-10-fold lower in Nax lines compared with Tamaroi. Thus, it appears that Nax loci confer two highly complementary mechanisms, both of which contribute towards reducing the xylem Na\(^{+}\) content. One enhances the retrieval of Na\(^{+}\) back into the root stele via HKT1;4 or HKT1;5, whilst the other reduces the rate of Na\(^{+}\) loading into the xylem via SOS1. It is suggested that such duality plays an important adaptive role with greater versatility for responding to a changing environment and controlling Na\(^{+}\) delivery to the shoot.}, language = {en} } @article{LorenzinBenaryBaluapurietal.2016, author = {Lorenzin, Francesca and Benary, Uwe and Baluapuri, Apoorva and Walz, Susanne and Jung, Lisa Anna and von Eyss, Bj{\"o}rn and Kisker, Caroline and Wolf, Jana and Eilers, Martin and Wolf, Elmar}, title = {Different promoter affinities account for specificity in MYC-dependent gene regulation}, series = {eLife}, volume = {5}, journal = {eLife}, doi = {10.7554/eLife.15161}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-162913}, pages = {e15161}, year = {2016}, abstract = {Enhanced expression of the MYC transcription factor is observed in the majority of tumors. Two seemingly conflicting models have been proposed for its function: one proposes that MYC enhances expression of all genes, while the other model suggests gene-specific regulation. Here, we have explored the hypothesis that specific gene expression profiles arise since promoters differ in affinity for MYC and high-affinity promoters are fully occupied by physiological levels of MYC. We determined cellular MYC levels and used RNA- and ChIP-sequencing to correlate promoter occupancy with gene expression at different concentrations of MYC. Mathematical modeling showed that binding affinities for interactions of MYC with DNA and with core promoter-bound factors, such as WDR5, are sufficient to explain promoter occupancies observed in vivo. Importantly, promoter affinity stratifies different biological processes that are regulated by MYC, explaining why tumor-specific MYC levels induce specific gene expression programs and alter defined biological properties of cells.}, language = {en} } @article{KaluzaWallaceHeardetal.2016, author = {Kaluza, Benjamin F. and Wallace, Helen and Heard, Tim A. and Klein, Aelxandra-Maria and Leonhardt, Sara D.}, title = {Urban gardens promote bee foraging over natural habitats and plantations}, series = {Ecology and Evolution}, volume = {6}, journal = {Ecology and Evolution}, number = {5}, doi = {10.1002/ece3.1941}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-162713}, pages = {1304-1316}, year = {2016}, abstract = {Increasing human land use for agriculture and housing leads to the loss of natural habitat and to widespread declines in wild bees. Bee foraging dynamics and fitness depend on the availability of resources in the surrounding landscape, but how precisely landscape related resource differences affect bee foraging patterns remains unclear. To investigate how landscape and its interaction with season and weather drive foraging and resource intake in social bees, we experimentally compared foraging activity, the allocation of foragers to different resources (pollen, nectar, and resin) and overall resource intake in the Australian stingless bee Tetragonula carbonaria (Apidae, Meliponini). Bee colonies were monitored in different seasons over two years. We compared foraging patterns and resource intake between the bees' natural habitat (forests) and two landscapes differently altered by humans (suburban gardens and agricultural macadamia plantations). We found foraging activity as well as pollen and nectar forager numbers to be highest in suburban gardens, intermediate in forests and low in plantations. Foraging patterns further differed between seasons, but seasonal variations strongly differed between landscapes. Sugar and pollen intake was low in plantations, but contrary with our predictions, it was even higher in gardens than in forests. In contrast, resin intake was similar across landscapes. Consequently, differences in resource availability between natural and altered landscapes strongly affect foraging patterns and thus resource intake in social bees. While agricultural monocultures largely reduce foraging success, suburban gardens can increase resource intake well above rates found in natural habitats of bees, indicating that human activities can both decrease and increase the availability of resources in a landscape and thus reduce or enhance bee fitness.}, language = {en} } @article{AhmedZeeshanDandekar2016, author = {Ahmed, Zeeshan and Zeeshan, Saman and Dandekar, Thomas}, title = {Mining biomedical images towards valuable information retrieval in biomedical and life sciences}, series = {Database - The Journal of Biological Databases and Curation}, volume = {2016}, journal = {Database - The Journal of Biological Databases and Curation}, doi = {10.1093/database/baw118}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-162697}, pages = {baw118}, year = {2016}, abstract = {Biomedical images are helpful sources for the scientists and practitioners in drawing significant hypotheses, exemplifying approaches and describing experimental results in published biomedical literature. In last decades, there has been an enormous increase in the amount of heterogeneous biomedical image production and publication, which results in a need for bioimaging platforms for feature extraction and analysis of text and content in biomedical images to take advantage in implementing effective information retrieval systems. In this review, we summarize technologies related to data mining of figures. We describe and compare the potential of different approaches in terms of their developmental aspects, used methodologies, produced results, achieved accuracies and limitations. Our comparative conclusions include current challenges for bioimaging software with selective image mining, embedded text extraction and processing of complex natural language queries.}, language = {en} } @article{MildnerRoces2016, author = {Mildner, Stephanie and Roces, Flavio}, title = {Plasticity of Daily Behavioral Rhythms in Foragers and Nurses of the Ant Camponotus rufipes: Influence of Social Context and Feeding Times}, series = {PLoS One}, volume = {12}, journal = {PLoS One}, number = {1}, doi = {10.1371/journal.pone.0169244}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148010}, pages = {e0169244}, year = {2016}, abstract = {Daily activities within an ant colony need precise temporal organization, and an endogenous clock appears to be essential for such timing processes. A clock drives locomotor rhythms in isolated workers in a number of ant species, but its involvement in activities displayed in the social context is unknown. We compared locomotor rhythms in isolated individuals and behavioral rhythms in the social context of workers of the ant Camponotus rufipes. Both forager and nurse workers exhibited circadian rhythms in locomotor activity under constant conditions, indicating the involvement of an endogenous clock. Activity was mostly nocturnal and synchronized with the 12:12h light-dark-cycle. To evaluate whether rhythmicity was maintained in the social context and could be synchronized with non-photic zeitgebers such as feeding times, daily behavioral activities of single workers inside and outside the nest were quantified continuously over 24 hours in 1656 hours of video recordings. Food availability was limited to a short time window either at day or at night, thus mimicking natural conditions of temporally restricted food access. Most foragers showed circadian foraging behavior synchronized with food availability, either at day or nighttime. When isolated thereafter in single locomotor activity monitors, foragers mainly displayed arrhythmicity. Here, high mortality suggested potential stressful effects of the former restriction of food availability. In contrast, nurse workers showed high overall activity levels in the social context and performed their tasks all around the clock with no circadian pattern, likely to meet the needs of the brood. In isolation, the same individuals exhibited in turn strong rhythmic activity and nocturnality. Thus, endogenous activity rhythms were inhibited in the social context, and timing of daily behaviors was flexibly adapted to cope with task demands. As a similar socially-mediated plasticity in circadian rhythms was already shown in honey bees, the temporal organization in C. rufipes and honey bees appear to share similar basic features.}, language = {en} } @article{Kramer2016, author = {Kramer, Susanne}, title = {Simultaneous detection of mRNA transcription and decay intermediates by dual colour single mRNA FISH on subcellular resolution}, series = {Nucleic Acids Research}, journal = {Nucleic Acids Research}, doi = {10.1093/nar/gkw1245}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148002}, pages = {gkw1245}, year = {2016}, abstract = {The detection of mRNAs undergoing transcription or decay is challenging, because both processes are fast. However, the relative proportion of an mRNA in synthesis or decay increases with mRNA size and decreases with mRNA half-life. Based on this rationale, I have exploited a 22 200 nucleotide-long, short-lived endogenous mRNA as a reporter for mRNA metabolism in trypanosomes. The extreme 5΄ and 3΄ ends were labeled with red- and green-fluorescent Affymetrix® single mRNA FISH probes, respectively. In the resulting fluorescence images, yellow spots represent intact mRNAs; red spots are mRNAs in transcription or 3΄-5΄ decay, and green spots are mRNAs in 5΄-3΄ degradation. Most red spots were nuclear and insensitive to transcriptional inhibition and thus likely transcription intermediates. Most green spots were cytoplasmic, confirming that the majority of cytoplasmic decay in trypanosomes is 5΄-3΄. The system showed the expected changes at inhibition of transcription or translation and RNAi depletion of the trypanosome homologue to the 5΄-3΄ exoribonuclease Xrn1. The method allows to monitor changes in mRNA metabolism both on cellular and on population/tissue wide levels, but also to study the subcellular localization of mRNA transcription and decay pathways. I show that the system is applicable to mammalian cells.}, language = {en} } @article{KunzWolfSchulzeetal.2016, author = {Kunz, Meik and Wolf, Beat and Schulze, Harald and Atlan, David and Walles, Thorsten and Walles, Heike and Dandekar, Thomas}, title = {Non-Coding RNAs in Lung Cancer: Contribution of Bioinformatics Analysis to the Development of Non-Invasive Diagnostic Tools}, series = {Genes}, volume = {8}, journal = {Genes}, number = {1}, doi = {10.3390/genes8010008}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-147990}, pages = {8}, year = {2016}, abstract = {Lung cancer is currently the leading cause of cancer related mortality due to late diagnosis and limited treatment intervention. Non-coding RNAs are not translated into proteins and have emerged as fundamental regulators of gene expression. Recent studies reported that microRNAs and long non-coding RNAs are involved in lung cancer development and progression. Moreover, they appear as new promising non-invasive biomarkers for early lung cancer diagnosis. Here, we highlight their potential as biomarker in lung cancer and present how bioinformatics can contribute to the development of non-invasive diagnostic tools. For this, we discuss several bioinformatics algorithms and software tools for a comprehensive understanding and functional characterization of microRNAs and long non-coding RNAs.}, language = {en} } @article{OthmanNaseemAwadetal.2016, author = {Othman, Eman M. and Naseem, Muhammed and Awad, Eman and Dandekar, Thomas and Stopper, Helga}, title = {The Plant Hormone Cytokinin Confers Protection against Oxidative Stress in Mammalian Cells}, series = {PLoS One}, volume = {11}, journal = {PLoS One}, number = {12}, doi = {10.1371/journal.pone.0168386}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-147983}, pages = {e0168386}, year = {2016}, abstract = {Modulating key dynamics of plant growth and development, the effects of the plant hormone cytokinin on animal cells gained much attention recently. Most previous studies on cytokinin effects on mammalian cells have been conducted with elevated cytokinin concentration (in the μM range). However, to examine physiologically relevant dose effects of cytokinins on animal cells, we systematically analyzed the impact of kinetin in cultured cells at low and high concentrations (1nM-10μM) and examined cytotoxic and genotoxic conditions. We furthermore measured the intrinsic antioxidant activity of kinetin in a cell-free system using the Ferric Reducing Antioxidant Power assay and in cells using the dihydroethidium staining method. Monitoring viability, we looked at kinetin effects in mammalian cells such as HL60 cells, HaCaT human keratinocyte cells, NRK rat epithelial kidney cells and human peripheral lymphocytes. Kinetin manifests no antioxidant activity in the cell free system and high doses of kinetin (500 nM and higher) reduce cell viability and mediate DNA damage in vitro. In contrast, low doses (concentrations up to 100 nM) of kinetin confer protection in cells against oxidative stress. Moreover, our results show that pretreatment of the cells with kinetin significantly reduces 4-nitroquinoline 1-oxide mediated reactive oxygen species production. Also, pretreatment with kinetin retains cellular GSH levels when they are also treated with the GSH-depleting agent patulin. Our results explicitly show that low kinetin doses reduce apoptosis and protect cells from oxidative stress mediated cell death. Future studies on the interaction between cytokinins and human cellular pathway targets will be intriguing.}, language = {en} } @article{AnkenbrandWeberBeckeretal.2016, author = {Ankenbrand, Markus J. and Weber, Lorenz and Becker, Dirk and F{\"o}rster, Frank and Bemm, Felix}, title = {TBro: visualization and management of de novo transcriptomes}, series = {Database}, volume = {2016}, journal = {Database}, doi = {10.1093/database/baw146}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-147954}, pages = {baw146}, year = {2016}, abstract = {RNA sequencing (RNA-seq) has become a powerful tool to understand molecular mechanisms and/or developmental programs. It provides a fast, reliable and cost-effective method to access sets of expressed elements in a qualitative and quantitative manner. Especially for non-model organisms and in absence of a reference genome, RNA-seq data is used to reconstruct and quantify transcriptomes at the same time. Even SNPs, InDels, and alternative splicing events are predicted directly from the data without having a reference genome at hand. A key challenge, especially for non-computational personnal, is the management of the resulting datasets, consisting of different data types and formats. Here, we present TBro, a flexible de novo transcriptome browser, tackling this challenge. TBro aggregates sequences, their annotation, expression levels as well as differential testing results. It provides an easy-to-use interface to mine the aggregated data and generate publication-ready visualizations. Additionally, it supports users with an intuitive cart system, that helps collecting and analysing biological meaningful sets of transcripts. TBro's modular architecture allows easy extension of its functionalities in the future. Especially, the integration of new data types such as proteomic quantifications or array-based gene expression data is straightforward. Thus, TBro is a fully featured yet flexible transcriptome browser that supports approaching complex biological questions and enhances collaboration of numerous researchers.}, language = {en} } @article{SommerlandtSpaetheRoessleretal.2016, author = {Sommerlandt, Frank M. J. and Spaethe, Johannes and R{\"o}ssler, Wolfgang and Dyer, Adrian G.}, title = {Does Fine Color Discrimination Learning in Free-Flying Honeybees Change Mushroom-Body Calyx Neuroarchitecture?}, series = {PLoS One}, volume = {11}, journal = {PLoS One}, number = {10}, doi = {10.1371/journal.pone.0164386}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-147932}, pages = {e0164386}, year = {2016}, abstract = {Honeybees learn color information of rewarding flowers and recall these memories in future decisions. For fine color discrimination, bees require differential conditioning with a concurrent presentation of target and distractor stimuli to form a long-term memory. Here we investigated whether the long-term storage of color information shapes the neural network of microglomeruli in the mushroom body calyces and if this depends on the type of conditioning. Free-flying honeybees were individually trained to a pair of perceptually similar colors in either absolute conditioning towards one of the colors or in differential conditioning with both colors. Subsequently, bees of either conditioning groups were tested in non-rewarded discrimination tests with the two colors. Only bees trained with differential conditioning preferred the previously learned color, whereas bees of the absolute conditioning group, and a stimuli-na{\"i}ve group, chose randomly among color stimuli. All bees were then kept individually for three days in the dark to allow for complete long-term memory formation. Whole-mount immunostaining was subsequently used to quantify variation of microglomeruli number and density in the mushroom-body lip and collar. We found no significant differences among groups in neuropil volumes and total microglomeruli numbers, but learning performance was negatively correlated with microglomeruli density in the absolute conditioning group. Based on these findings we aim to promote future research approaches combining behaviorally relevant color learning tests in honeybees under free-flight conditions with neuroimaging analysis; we also discuss possible limitations of this approach.q}, language = {en} } @article{SerenGrimmFitzetal.2016, author = {Seren, {\"U}mit and Grimm, Dominik and Fitz, Joffrey and Weigel, Detlef and Nordborg, Magnus and Borgwardt, Karsten and Korte, Arthur}, title = {AraPheno: a public database for Arabidopsis thaliana phenotypes}, series = {Nucleic Acids Research}, volume = {45}, journal = {Nucleic Acids Research}, number = {D1}, doi = {10.1093/nar/gkw986}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-147909}, pages = {D1054-D1059}, year = {2016}, abstract = {Natural genetic variation makes it possible to discover evolutionary changes that have been maintained in a population because they are advantageous. To understand genotype-phenotype relationships and to investigate trait architecture, the existence of both high-resolution genotypic and phenotypic data is necessary. Arabidopsis thaliana is a prime model for these purposes. This herb naturally occurs across much of the Eurasian continent and North America. Thus, it is exposed to a wide range of environmental factors and has been subject to natural selection under distinct conditions. Full genome sequencing data for more than 1000 different natural inbred lines are available, and this has encouraged the distributed generation of many types of phenotypic data. To leverage these data for meta analyses, AraPheno (https://arapheno.1001genomes.org) provide a central repository of population-scale phenotypes for A. thaliana inbred lines. AraPheno includes various features to easily access, download and visualize the phenotypic data. This will facilitate a comparative analysis of the many different types of phenotypic data, which is the base to further enhance our understanding of the genotype-phenotype map.}, language = {en} } @article{KrajinovicReimerKudlichetal.2016, author = {Krajinovic, K. and Reimer, S. and Kudlich, T. and Germer, C. T. and Wiegering, A.}, title = {"Rendezvous technique" for intraluminal vacuum therapy of anastomotic leakage of the jejunum}, series = {Surgical Case Reports}, volume = {2}, journal = {Surgical Case Reports}, number = {114}, doi = {10.1186/s40792-016-0243-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-147883}, year = {2016}, abstract = {Background Anastomotic leakage (AL) is one of the most common and serious complications following visceral surgery. In recent years, endoluminal vacuum therapy has dramatically changed therapeutic options for AL, but its use has been limited to areas easily accessible by endoscope. Case presentation We describe the first use of endoluminal vacuum therapy in the small intestine employing a combined surgical and endoscopic "rendezvous technique" in which the surgeon assists the endoscopic placement of an endoluminal vacuum therapy sponge in the jejunum by means of a pullback string. This technique led to a completely closed AL after 27 days and 7 changes of the endosponge. Conclusion The combined surgical and endoscopic rendezvous technique can be useful in cases of otherwise difficult endosponge placement.}, language = {en} } @article{AdolfiHerpinRegensburgeretal.2016, author = {Adolfi, Mateus C. and Herpin, Amaury and Regensburger, Martina and Sacquegno, Jacopo and Waxman, Joshua S. and Schartl, Manfred}, title = {Retinoic acid and meiosis induction in adult versus embryonic gonads of medaka}, series = {Scientific Reports}, volume = {6}, journal = {Scientific Reports}, doi = {10.1038/srep34281}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-147843}, pages = {34281}, year = {2016}, abstract = {In vertebrates, one of the first recognizable sex differences in embryos is the onset of meiosis, known to be regulated by retinoic acid (RA) in mammals. We investigated in medaka a possible meiotic function of RA during the embryonic sex determination (SD) period and in mature gonads. We found RA mediated transcriptional activation in germ cells of both sexes much earlier than the SD stage, however, no such activity during the critical stages of SD. In adults, expression of the RA metabolizing enzymes indicates sexually dimorphic RA levels. In testis, RA acts directly in Sertoli, Leydig and pre-meiotic germ cells. In ovaries, RA transcriptional activity is highest in meiotic oocytes. Our results show that RA plays an important role in meiosis induction and gametogenesis in adult medaka but contrary to common expectations, not for initiating the first meiosis in female germ cells at the SD stage.}, language = {en} } @article{LichthardtKerscherDietzetal.2016, author = {Lichthardt, Sven and Kerscher, Alexander and Dietz, Ulrich A. and Jurowich, Christian and Kunzmann, Volker and von Rahden, Burkhard H. A. and Germer, Christoph-Thomas and Wiegering, Armin}, title = {Original article: role of adjuvant chemotherapy in a perioperative chemotherapy regimen for gastric cancer}, series = {BMC Cancer}, volume = {16}, journal = {BMC Cancer}, number = {650}, doi = {10.1186/s12885-016-2708-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-147743}, year = {2016}, abstract = {Background Multimodal treatment strategies - perioperative chemotherapy (CTx) and radical surgery - are currently accepted as treatment standard for locally advanced gastric cancer. However, the role of adjuvant postoperative CTx (postCTx) in addition to neoadjuvant preoperative CTx (preCTx) in this setting remains controversial. Methods Between 4/2006 and 12/2013, 116 patients with locally advanced gastric cancer were treated with preCTx. 72 patients (62 \%), in whom complete tumor resection (R0, subtotal/total gastrectomy with D2-lymphadenectomy) was achieved, were divided into two groups, one of which receiving adjuvant therapy (n = 52) and one without (n = 20). These groups were analyzed with regard to survival and exclusion criteria for adjuvant therapy. Results Postoperative complications, as well as their severity grade, did not correlate with fewer postCTx cycles administered (p = n.s.). Long-term survival was shorter in patients receiving postCTx in comparison to patients without postCTx, but did not show statistical significance. In per protocol analysis by excluding two patients with perioperative death, a shorter 3-year survival rate was observed in patients receiving postCTx compared to patients without postCTx (3-year survival: 71.2 \% postCTx group vs. 90.0 \% non-postCTx group; p = 0.038). Conclusion These results appear contradicting to the anticipated outcome. While speculative, they question the value of post-CTx. Prospectively randomized studies are needed to elucidate the role of postCTx.}, language = {en} } @article{KaltdorfSrivastavaGuptaetal.2016, author = {Kaltdorf, Martin and Srivastava, Mugdha and Gupta, Shishir K. and Liang, Chunguang and Binder, Jasmin and Dietl, Anna-Maria and Meir, Zohar and Haas, Hubertus and Osherov, Nir and Krappmann, Sven and Dandekar, Thomas}, title = {Systematic Identification of Anti-Fungal Drug Targets by a Metabolic Network Approach}, series = {Frontiers in Molecular Bioscience}, volume = {3}, journal = {Frontiers in Molecular Bioscience}, doi = {10.3389/fmolb.2016.00022}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-147396}, pages = {22}, year = {2016}, abstract = {New antimycotic drugs are challenging to find, as potential target proteins may have close human orthologs. We here focus on identifying metabolic targets that are critical for fungal growth and have minimal similarity to targets among human proteins. We compare and combine here: (I) direct metabolic network modeling using elementary mode analysis and flux estimates approximations using expression data, (II) targeting metabolic genes by transcriptome analysis of condition-specific highly expressed enzymes, and (III) analysis of enzyme structure, enzyme interconnectedness ("hubs"), and identification of pathogen-specific enzymes using orthology relations. We have identified 64 targets including metabolic enzymes involved in vitamin synthesis, lipid, and amino acid biosynthesis including 18 targets validated from the literature, two validated and five currently examined in own genetic experiments, and 38 further promising novel target proteins which are non-orthologous to human proteins, involved in metabolism and are highly ranked drug targets from these pipelines.}, language = {en} } @article{KunzLiangNillaetal.2016, author = {Kunz, Meik and Liang, Chunguang and Nilla, Santosh and Cecil, Alexander and Dandekar, Thomas}, title = {The drug-minded protein interaction database (DrumPID) for efficient target analysis and drug development}, series = {Database}, volume = {2016}, journal = {Database}, doi = {10.1093/database/baw041}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-147369}, pages = {baw041}, year = {2016}, abstract = {The drug-minded protein interaction database (DrumPID) has been designed to provide fast, tailored information on drugs and their protein networks including indications, protein targets and side-targets. Starting queries include compound, target and protein interactions and organism-specific protein families. Furthermore, drug name, chemical structures and their SMILES notation, affected proteins (potential drug targets), organisms as well as diseases can be queried including various combinations and refinement of searches. Drugs and protein interactions are analyzed in detail with reference to protein structures and catalytic domains, related compound structures as well as potential targets in other organisms. DrumPID considers drug functionality, compound similarity, target structure, interactome analysis and organismic range for a compound, useful for drug development, predicting drug side-effects and structure-activity relationships.}, language = {en} } @article{BeckerKucharskiRoessleretal.2016, author = {Becker, Nils and Kucharski, Robert and R{\"o}ssler, Wolfgang and Maleszka, Ryszard}, title = {Age-dependent transcriptional and epigenomic responses to light exposure in the honey bee brain}, series = {FEBS Open Bio}, volume = {6}, journal = {FEBS Open Bio}, number = {7}, doi = {10.1002/2211-5463.12084}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-147080}, pages = {622-639}, year = {2016}, abstract = {Light is a powerful environmental stimulus of special importance in social honey bees that undergo a behavioral transition from in-hive to outdoor foraging duties. Our previous work has shown that light exposure induces structural neuronal plasticity in the mushroom bodies (MBs), a brain center implicated in processing inputs from sensory modalities. Here, we extended these analyses to the molecular level to unravel light-induced transcriptomic and epigenomic changes in the honey bee brain. We have compared gene expression in brain compartments of 1- and 7-day-old light-exposed honey bees with age-matched dark-kept individuals. We have found a number of differentially expressed genes (DEGs), both novel and conserved, including several genes with reported roles in neuronal plasticity. Most of the DEGs show age-related changes in the amplitude of light-induced expression and are likely to be both developmentally and environmentally regulated. Some of the DEGs are either known to be methylated or are implicated in epigenetic processes suggesting that responses to light exposure are at least partly regulated at the epigenome level. Consistent with this idea light alters the DNA methylation pattern of bgm, one of the DEGs affected by light exposure, and the expression of microRNA miR-932. This confirms the usefulness of our approach to identify candidate genes for neuronal plasticity and provides evidence for the role of epigenetic processes in driving the molecular responses to visual stimulation.}, language = {en} } @article{BrunetVolffSchartl2016, author = {Brunet, Fr{\´e}d{\´e}ric G. and Volff, Jean-Nicolas and Schartl, Manfred}, title = {Whole Genome Duplications Shaped the Receptor Tyrosine Kinase Repertoire of Jawed Vertebrates}, series = {Genome Biology Evolution}, volume = {8}, journal = {Genome Biology Evolution}, number = {15}, doi = {10.1093/gbe/evw103}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-146988}, pages = {1600-1613}, year = {2016}, abstract = {The receptor tyrosine kinase (RTK) gene family, involved primarily in cell growth and differentiation, comprises proteins with a common enzymatic tyrosine kinase intracellular domain adjacent to a transmembrane region. The amino-terminal portion of RTKs is extracellular and made of different domains, the combination of which characterizes each of the 20 RTK subfamilies among mammals. We analyzed a total of 7,376 RTK sequences among 143 vertebrate species to provide here the first comprehensive census of the jawed vertebrate repertoire. We ascertained the 58 genes previously described in the human and mouse genomes and established their phylogenetic relationships. We also identified five additional RTKs amounting to a total of 63 genes in jawed vertebrates. We found that the vertebrate RTK gene family has been shaped by the two successive rounds of whole genome duplications (WGD) called 1R and 2R (1R/2R) that occurred at the base of the vertebrates. In addition, the Vegfr and Ephrin receptor subfamilies were expanded by single gene duplications. In teleost fish, 23 additional RTK genes have been retained after another expansion through the fish-specific third round (3R) of WGD. Several lineage-specific gene losses were observed. For instance, birds have lost three RTKs, and different genes are missing in several fish sublineages. The RTK gene family presents an unusual high gene retention rate from the vertebrate WGDs (58.75\% after 1R/2R, 64.4\% after 3R), resulting in an expansion that might be correlated with the evolution of complexity of vertebrate cellular communication and intracellular signaling.}, language = {en} } @article{FalibeneRocesRoessleretal.2016, author = {Falibene, Augustine and Roces, Flavio and R{\"o}ssler, Wolfgang and Groh, Claudia}, title = {Daily Thermal Fluctuations Experienced by Pupae via Rhythmic Nursing Behavior Increase Numbers of Mushroom Body Microglomeruli in the Adult Ant Brain}, series = {Frontiers in Behavioral Neuroscience}, volume = {10}, journal = {Frontiers in Behavioral Neuroscience}, number = {73}, doi = {10.3389/fnbeh.2016.00073}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-146711}, year = {2016}, abstract = {Social insects control brood development by using different thermoregulatory strategies. Camponotus mus ants expose their brood to daily temperature fluctuations by translocating them inside the nest following a circadian rhythm of thermal preferences. At the middle of the photophase brood is moved to locations at 30.8°C; 8 h later, during the night, the brood is transferred back to locations at 27.5°C. We investigated whether daily thermal fluctuations experienced by developing pupae affect the neuroarchitecture in the adult brain, in particular in sensory input regions of the mushroom bodies (MB calyces). The complexity of synaptic microcircuits was estimated by quantifying MB-calyx volumes together with densities of presynaptic boutons of microglomeruli (MG) in the olfactory lip and visual collar regions. We compared young adult workers that were reared either under controlled daily thermal fluctuations of different amplitudes, or at different constant temperatures. Thermal regimes significantly affected the large (non-dense) olfactory lip region of the adult MB calyx, while changes in the dense lip and the visual collar were less evident. Thermal fluctuations mimicking the amplitudes of natural temperature fluctuations via circadian rhythmic translocation of pupae by nurses (amplitude 3.3°C) lead to higher numbers of MG in the MB calyces compared to those in pupae reared at smaller or larger thermal amplitudes (0.0, 1.5, 9.6°C), or at constant temperatures (25.4, 35.0°C). We conclude that rhythmic control of brood temperature by nursing ants optimizes brain development by increasing MG densities and numbers in specific brain areas. Resulting differences in synaptic microcircuits are expected to affect sensory processing and learning abilities in adult ants, and may also promote interindividual behavioral variability within colonies.}, language = {en} } @article{RosenbaumSchickWollbornetal.2016, author = {Rosenbaum, Corinna and Schick, Martin Alexander and Wollborn, Jakob and Heider, Andreas and Scholz, Claus-J{\"u}rgen and Cecil, Alexander and Niesler, Beate and Hirrlinger, Johannes and Walles, Heike and Metzger, Marco}, title = {Activation of Myenteric Glia during Acute Inflammation In Vitro and In Vivo}, series = {PLoS One}, volume = {11}, journal = {PLoS One}, number = {3}, doi = {10.1371/journal.pone.0151335}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-146544}, pages = {e0151335}, year = {2016}, abstract = {Background Enteric glial cells (EGCs) are the main constituent of the enteric nervous system and share similarities with astrocytes from the central nervous system including their reactivity to an inflammatory microenvironment. Previous studies on EGC pathophysiology have specifically focused on mucosal glia activation and its contribution to mucosal inflammatory processes observed in the gut of inflammatory bowel disease (IBD) patients. In contrast knowledge is scarce on intestinal inflammation not locally restricted to the mucosa but systemically affecting the intestine and its effect on the overall EGC network. Methods and Results In this study, we analyzed the biological effects of a systemic LPS-induced hyperinflammatory insult on overall EGCs in a rat model in vivo, mimicking the clinical situation of systemic inflammation response syndrome (SIRS). Tissues from small and large intestine were removed 4 hours after systemic LPS-injection and analyzed on transcript and protein level. Laser capture microdissection was performed to study plexus-specific gene expression alterations. Upon systemic LPS-injection in vivo we observed a rapid and dramatic activation of Glial Fibrillary Acidic Protein (GFAP)-expressing glia on mRNA level, locally restricted to the myenteric plexus. To study the specific role of the GFAP subpopulation, we established flow cytometry-purified primary glial cell cultures from GFAP promotor-driven EGFP reporter mice. After LPS stimulation, we analyzed cytokine secretion and global gene expression profiles, which were finally implemented in a bioinformatic comparative transcriptome analysis. Enriched GFAP+ glial cells cultured as gliospheres secreted increased levels of prominent inflammatory cytokines upon LPS stimulation. Additionally, a shift in myenteric glial gene expression profile was induced that predominantly affected genes associated with immune response. Conclusion and Significance Our findings identify the myenteric GFAP-expressing glial subpopulation as particularly susceptible and responsive to acute systemic inflammation of the gut wall and complement knowledge on glial involvement in mucosal inflammation of the intestine.}, language = {en} } @article{BargulJungMcOdimbaetal.2016, author = {Bargul, Joel L. and Jung, Jamin and McOdimba, Francis A. and Omogo, Collins O. and Adung'a, Vincent O. and Kr{\"u}ger, Timothy and Masiga, Daniel K. and Engstler, Markus}, title = {Species-Specific Adaptations of Trypanosome Morphology and Motility to the Mammalian Host}, series = {PLoS Pathogens}, volume = {12}, journal = {PLoS Pathogens}, number = {2}, doi = {10.1371/journal.ppat.1005448}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-146513}, pages = {e1005448}, year = {2016}, abstract = {African trypanosomes thrive in the bloodstream and tissue spaces of a wide range of mammalian hosts. Infections of cattle cause an enormous socio-economic burden in sub-Saharan Africa. A hallmark of the trypanosome lifestyle is the flagellate's incessant motion. This work details the cell motility behavior of the four livestock-parasites Trypanosoma vivax, T. brucei, T. evansi and T. congolense. The trypanosomes feature distinct swimming patterns, speeds and flagellar wave frequencies, although the basic mechanism of flagellar propulsion is conserved, as is shown by extended single flagellar beat analyses. Three-dimensional analyses of the trypanosomes expose a high degree of dynamic pleomorphism, typified by the 'cellular waveform'. This is a product of the flagellar oscillation, the chirality of the flagellum attachment and the stiffness of the trypanosome cell body. The waveforms are characteristic for each trypanosome species and are influenced by changes of the microenvironment, such as differences in viscosity and the presence of confining obstacles. The distinct cellular waveforms may be reflective of the actual anatomical niches the parasites populate within their mammalian host. T. vivax displays waveforms optimally aligned to the topology of the bloodstream, while the two subspecies T. brucei and T. evansi feature distinct cellular waveforms, both additionally adapted to motion in more confined environments such as tissue spaces. T. congolense reveals a small and stiff waveform, which makes these parasites weak swimmers and destined for cell adherence in low flow areas of the circulation. Thus, our experiments show that the differential dissemination and annidation of trypanosomes in their mammalian hosts may depend on the distinct swimming capabilities of the parasites.}, language = {en} } @article{DejungSubotaBuceriusetal.2016, author = {Dejung, Mario and Subota, Ines and Bucerius, Ferdinand and Dindar, G{\"u}lcin and Freiwald, Anja and Engstler, Markus and Boshart, Michael and Butter, Falk and Janzen, Chistian J.}, title = {Quantitative proteomics uncovers novel factors involved in developmental differentiation of Trypanosoma brucei}, series = {PLoS Pathogens}, volume = {12}, journal = {PLoS Pathogens}, number = {2}, doi = {10.1371/journal.ppat.1005439}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-146362}, pages = {e1005439}, year = {2016}, abstract = {Developmental differentiation is a universal biological process that allows cells to adapt to different environments to perform specific functions. African trypanosomes progress through a tightly regulated life cycle in order to survive in different host environments when they shuttle between an insect vector and a vertebrate host. Transcriptomics has been useful to gain insight into RNA changes during stage transitions; however, RNA levels are only a moderate proxy for protein abundance in trypanosomes. We quantified 4270 protein groups during stage differentiation from the mammalian-infective to the insect form and provide classification for their expression profiles during development. Our label-free quantitative proteomics study revealed previously unknown components of the differentiation machinery that are involved in essential biological processes such as signaling, posttranslational protein modifications, trafficking and nuclear transport. Furthermore, guided by our proteomic survey, we identified the cause of the previously observed differentiation impairment in the histone methyltransferase DOT1B knock-out strain as it is required for accurate karyokinesis in the first cell division during differentiation. This epigenetic regulator is likely involved in essential chromatin restructuring during developmental differentiation, which might also be important for differentiation in higher eukaryotic cells. Our proteome dataset will serve as a resource for detailed investigations of cell differentiation to shed more light on the molecular mechanisms of this process in trypanosomes and other eukaryotes.}, language = {en} } @article{KneitzMishraChalopinetal.2016, author = {Kneitz, Susanne and Mishra, Rasmi R. and Chalopin, Domitille and Postlethwait, John and Warren, Wesley C. and Walther, Ronald B. and Schartl, Manfred}, title = {Germ cell and tumor associated piRNAs in the medaka and \(Xiphophorus\) melanoma models}, series = {BMC Genomics}, volume = {17}, journal = {BMC Genomics}, number = {357}, doi = {10.1186/s12864-016-2697-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-146028}, year = {2016}, abstract = {Background A growing number of studies report an abnormal expression of Piwi-interacting RNAs (piRNAs) and the piRNA processing enzyme Piwi in many cancers. Whether this finding is an epiphenomenon of the chaotic molecular biology of the fast dividing, neoplastically transformed cells or is functionally relevant to tumorigenesisis is difficult to discern at present. To better understand the role of piRNAs in cancer development small laboratory fish models can make a valuable contribution. However, little is known about piRNAs in somatic and neoplastic tissues of fish. Results To identify piRNA clusters that might be involved in melanoma pathogenesis, we use several transgenic lines of medaka, and platyfish/swordtail hybrids, which develop various types of melanoma. In these tumors Piwi, is expressed at different levels, depending on tumor type. To quantify piRNA levels, whole piRNA populations of testes and melanomas of different histotypes were sequenced. Because no reference piRNA cluster set for medaka or Xiphophorus was yet available we developed a software pipeline to detect piRNA clusters in our samples and clusters were selected that were enriched in one or more samples. We found several loci to be overexpressed or down-regulated in different melanoma subtypes as compared to hyperpigmented skin. Furthermore, cluster analysis revealed a clear distinction between testes, low-grade and high-grade malignant melanoma in medaka. Conclusions Our data imply that dysregulation of piRNA expression may be associated with development of melanoma. Our results also reinforce the importance of fish as a suitable model system to study the role of piRNAs in tumorigenesis.}, language = {en} } @article{OttoHahlbrockEichetal.2016, author = {Otto, Christoph and Hahlbrock, Theresa and Eich, Kilian and Karaaslan, Ferdi and J{\"u}rgens, Constantin and Germer, Christoph-Thomas and Wiegering, Armin and K{\"a}mmerer, Ulrike}, title = {Antiproliferative and antimetabolic effects behind the anticancer property of fermented wheat germ extract}, series = {BMC Complementary and Alternative Medicine}, volume = {16}, journal = {BMC Complementary and Alternative Medicine}, number = {160}, doi = {10.1186/s12906-016-1138-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-146013}, year = {2016}, abstract = {Background Fermented wheat germ extract (FWGE) sold under the trade name Avemar exhibits anticancer activity in vitro and in vivo. Its mechanisms of action are divided into antiproliferative and antimetabolic effects. Its influcence on cancer cell metabolism needs further investigation. One objective of this study, therefore, was to further elucidate the antimetabolic action of FWGE. The anticancer compound 2,6-dimethoxy-1,4-benzoquinone (DMBQ) is the major bioactive compound in FWGE and is probably responsible for its anticancer activity. The second objective of this study was to compare the antiproliferative properties in vitro of FWGE and the DMBQ compound. Methods The IC\(_{50}\) values of FWGE were determined for nine human cancer cell lines after 24 h of culture. The DMBQ compound was used at a concentration of 24 μmol/l, which is equal to the molar concentration of DMBQ in FWGE. Cell viability, cell cycle, cellular redox state, glucose consumption, lactic acid production, cellular ATP levels, and the NADH/NAD\(^+\) ratio were measured. Results The mean IC\(_{50}\) value of FWGE for the nine human cancer cell lines tested was 10 mg/ml. Both FWGE (10 mg/ml) and the DMBQ compound (24 μmol/l) induced massive cell damage within 24 h after starting treatment, with changes in the cellular redox state secondary to formation of intracellular reactive oxygen species. Unlike the DMBQ compound, which was only cytotoxic, FWGE exhibited cytostatic and growth delay effects in addition to cytotoxicity. Both cytostatic and growth delay effects were linked to impaired glucose utilization which influenced the cell cycle, cellular ATP levels, and the NADH/NAD\(^+\) ratio. The growth delay effect in response to FWGE treatment led to induction of autophagy. Conclusions FWGE and the DMBQ compound both induced oxidative stress-promoted cytotoxicity. In addition, FWGE exhibited cytostatic and growth delay effects associated with impaired glucose utilization which led to autophagy, a possible previously unknown mechanism behind the influence of FWGE on cancer cell metabolism.}, language = {en} } @article{HornKellerHildebrandtetal.2016, author = {Horn, Hannes and Keller, Alexander and Hildebrandt, Ulrich and K{\"a}mpfer, Peter and Riederer, Markus and Hentschel, Ute}, title = {Draft genome of the \(Arabidopsis\) \(thaliana\) phyllosphere bacterium, \(Williamsia\) sp. ARP1}, series = {Standards in Genomic Sciences}, volume = {11}, journal = {Standards in Genomic Sciences}, number = {8}, doi = {10.1186/s40793-015-0122-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-146008}, year = {2016}, abstract = {The Gram-positive actinomycete \(Williamsia\) sp. ARP1 was originally isolated from the \(Arabidopsis\) \(thaliana\) phyllosphere. Here we describe the general physiological features of this microorganism together with the draft genome sequence and annotation. The 4,745,080 bp long genome contains 4434 protein-coding genes and 70 RNA genes. To our knowledge, this is only the second reported genome from the genus \(Williamsia\) and the first sequenced strain from the phyllosphere. The presented genomic information is interpreted in the context of an adaptation to the phyllosphere habitat.}, language = {en} } @article{PeckSchugZhangetal.2016, author = {Peck, Barrie and Schug, Zachary T. and Zhang, Qifeng and Dankworth, Beatrice and Jones, Dylan T. and Smethurst, Elizabeth and Patel, Rachana and Mason, Susan and Jian, Ming and Saunders, Rebecca and Howell, Michael and Mitter, Richard and Spencer-Dene, Bradley and Stamp, Gordon and McGarry, Lynn and James, Daniel and Shanks, Emma and Aboagye, Eric O. and Critchlow, Susan E. and Leung, Hing Y. and Harris, Adrian L. and Wakelam, Michael J. O. and Gottlieb, Eyal and Schulze, Almut}, title = {Inhibition of fatty acid desaturation is detrimental to cancer cell survival in metabolically compromised environments}, series = {Cancer \& Metabolism}, volume = {4}, journal = {Cancer \& Metabolism}, number = {6}, doi = {10.1186/s40170-016-0146-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-145905}, year = {2016}, abstract = {Background Enhanced macromolecule biosynthesis is integral to growth and proliferation of cancer cells. Lipid biosynthesis has been predicted to be an essential process in cancer cells. However, it is unclear which enzymes within this pathway offer the best selectivity for cancer cells and could be suitable therapeutic targets. Results Using functional genomics, we identified stearoyl-CoA desaturase (SCD), an enzyme that controls synthesis of unsaturated fatty acids, as essential in breast and prostate cancer cells. SCD inhibition altered cellular lipid composition and impeded cell viability in the absence of exogenous lipids. SCD inhibition also altered cardiolipin composition, leading to the release of cytochrome C and induction of apoptosis. Furthermore, SCD was required for the generation of poly-unsaturated lipids in cancer cells grown in spheroid cultures, which resemble those found in tumour tissue. We also found that SCD mRNA and protein expression is elevated in human breast cancers and predicts poor survival in high-grade tumours. Finally, silencing of SCD in prostate orthografts efficiently blocked tumour growth and significantly increased animal survival. Conclusions Our data implicate lipid desaturation as an essential process for cancer cell survival and suggest that targeting SCD could efficiently limit tumour expansion, especially under the metabolically compromised conditions of the tumour microenvironment.}, language = {en} }