@article{GrebinykPrylutskaBuchelnikovetal.2019, author = {Grebinyk, Anna and Prylutska, Svitlana and Buchelnikov, Anatoliy and Tverdokhleb, Nina and Grebinyk, Sergii and Evstigneev, Maxim and Matyshevska, Olga and Cherepanov, Vsevolod and Prylutskyy, Yuriy and Yashchuk, Valeriy and Naumovets, Anton and Ritter, Uwe and Dandekar, Thomas and Frohme, Marcus}, title = {C60 fullerene as an effective nanoplatform of alkaloid Berberine delivery into leukemic cells}, series = {Pharmaceutics}, volume = {11}, journal = {Pharmaceutics}, number = {11}, issn = {1999-4923}, doi = {10.3390/pharmaceutics11110586}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-193216}, pages = {586}, year = {2019}, abstract = {A herbal alkaloid Berberine (Ber), used for centuries in Ayurvedic, Chinese, Middle-Eastern, and native American folk medicines, is nowadays proved to function as a safe anticancer agent. Yet, its poor water solubility, stability, and bioavailability hinder clinical application. In this study, we have explored a nanosized carbon nanoparticle—C60 fullerene (C60)—for optimized Ber delivery into leukemic cells. Water dispersions of noncovalent C60-Ber nanocomplexes in the 1:2, 1:1, and 2:1 molar ratios were prepared. UV-Vis spectroscopy, dynamic light scattering (DLS), and atomic force microscopy (AFM) evidenced a complexation of the Ber cation with the negatively charged C60 molecule. The computer simulation showed that π-stacking dominates in Ber and C\(_{60}\) binding in an aqueous solution. Complexation with C\(_{60}\) was found to promote Ber intracellular uptake. By increasing C\(_{60}\) concentration, the C\(_{60}\)-Ber nanocomplexes exhibited higher antiproliferative potential towards CCRF-CEM cells, in accordance with the following order: free Ber < 1:2 < 1:1 < 2:1 (the most toxic). The activation of caspase 3/7 and accumulation in the sub-G1 phase of CCRF-CEM cells treated with C\(_{60}\)-Ber nanocomplexes evidenced apoptosis induction. Thus, this study indicates that the fast and easy noncovalent complexation of alkaloid Ber with C\(_{60}\) improved its in vitro efficiency against cancer cells.}, language = {en} } @article{GrebinykPrylutskaChepurnaetal.2019, author = {Grebinyk, Anna and Prylutska, Svitlana and Chepurna, Oksana and Grebinyk, Sergii and Prylutskyy, Yuriy and Ritter, Uwe and Ohulchanskyy, Tymish Y. and Matyshevska, Olga and Dandekar, Thomas and Frohme, Marcus}, title = {Synergy of chemo- and photodynamic therapies with C\(_{60}\) Fullerene-Doxorubicin nanocomplex}, series = {Nanomaterials}, volume = {9}, journal = {Nanomaterials}, number = {11}, issn = {2079-4991}, doi = {10.3390/nano9111540}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-193140}, year = {2019}, abstract = {A nanosized drug complex was explored to improve the efficiency of cancer chemotherapy, complementing it with nanodelivery and photodynamic therapy. For this, nanomolar amounts of a non-covalent nanocomplex of Doxorubicin (Dox) with carbon nanoparticle C\(_{60}\) fullerene (C\(_{60}\)) were applied in 1:1 and 2:1 molar ratio, exploiting C\(_{60}\) both as a drug-carrier and as a photosensitizer. The fluorescence microscopy analysis of human leukemic CCRF-CEM cells, in vitro cancer model, treated with nanocomplexes showed Dox's nuclear and C\(_{60}\)'s extranuclear localization. It gave an opportunity to realize a double hit strategy against cancer cells based on Dox's antiproliferative activity and C\(_{60}\)'s photoinduced pro-oxidant activity. When cells were treated with 2:1 C\(_{60}\)-Dox and irradiated at 405 nm the high cytotoxicity of photo-irradiated C\(_{60}\)-Dox enabled a nanomolar concentration of Dox and C\(_{60}\) to efficiently kill cancer cells in vitro. The high pro-oxidant and pro-apoptotic efficiency decreased IC\(_{50}\) 16, 9 and 7 × 10\(^3\)-fold, if compared with the action of Dox, non-irradiated nanocomplex, and C\(_{60}\)'s photodynamic effect, correspondingly. Hereafter, a strong synergy of therapy arising from the combination of C\(_{60}\)-mediated Dox delivery and C\(_{60}\) photoexcitation was revealed. Our data indicate that a combination of chemo- and photodynamic therapies with C\(_{60}\)-Dox nanoformulation provides a promising synergetic approach for cancer treatment.}, language = {en} } @article{GrebinykPrylutskaGrebinyketal.2019, author = {Grebinyk, Anna and Prylutska, Svitlana and Grebinyk, Sergii and Prylutskyy, Yuriy and Ritter, Uwe and Matyshevska, Olga and Dandekar, Thomas and Frohme, Marcus}, title = {Complexation with C\(_{60}\) fullerene increases doxorubicin efficiency against leukemic cells in vitro}, series = {Nanoscale Research Letters}, volume = {14}, journal = {Nanoscale Research Letters}, number = {61}, doi = {10.1186/s11671-019-2894-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-228257}, year = {2019}, abstract = {Conventional anticancer chemotherapy is limited because of severe side effects as well as a quickly evolving multidrug resistance of the tumor cells. To address this problem, we have explored a C\(_{60}\) fullerene-based nanosized system as a carrier for anticancer drugs for an optimized drug delivery to leukemic cells.Here, we studied the physicochemical properties and anticancer activity of C\(_{60}\) fullerene noncovalent complexes with the commonly used anticancer drug doxorubicin. C\(_{60}\)-Doxorubicin complexes in a ratio 1:1 and 2:1 were characterized with UV/Vis spectrometry, dynamic light scattering, and high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). The obtained analytical data indicated that the 140-nm complexes were stable and could be used for biological applications. In leukemic cell lines (CCRF-CEM, Jurkat, THP1 and Molt-16), the nanocomplexes revealed 3.5 higher cytotoxic potential in comparison with the free drug in a range of nanomolar concentrations. Also, the intracellular drug's level evidenced C\(_{60}\) fullerene considerable nanocarrier function.The results of this study indicated that C\(_{60}\) fullerene-based delivery nanocomplexes had a potential value for optimization of doxorubicin efficiency against leukemic cells.}, language = {en} } @phdthesis{Griffoni2019, author = {Griffoni, Chiara}, title = {Towards advanced immunocompetent skin wound models for in vitro drug evaluation}, doi = {10.25972/OPUS-19212}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-192125}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Current preclinical models used to evaluate novel therapies for improved healing include both in vitro and in vivo methods. However, ethical concerns related to the use of animals as well as the poor physiological translation between animal and human skin wound healing designate in vitro models as a highly relevant and promising platforms for healing investigation. While current in vitro 3D skin models recapitulate a mature tissue with healing properties, they still represent a simplification of the in vivo conditions, where for example the inflammatory response originating after wound formation involves the contribution of immune cells. Macrophages are among the main contributors to the inflammatory response and regulate its course thanks to their plasticity. Therefore, their implementation into in vitro skin could greatly increase the physiological relevance of the models. As no full-thickness immunocompetent skin model containing macrophages has been reported so far, the parameters necessary for a successful triple co-culture of fibroblasts, keratinocytes and macrophages were here investigated. At first, cell source and culture timed but also an implementation strategy for macrophages were deter-mined. The implementation of macrophages into the skin model focused on the minimization of the culture time to preserve immune cell viability and phenotype, as the environment has a major influence on cell polarization and cytokine production. To this end, incorporation of macrophages in 3D gels prior to the combination with skin models was selected to better mimic the in vivo environment. Em-bedded in collagen hydrogels, macrophages displayed a homogeneous cell distribution within the gel, preserving cell viability, their ability to respond to stimuli and their capability to migrate through the matrix, which are all needed during the involvement of macrophages in the inflammatory response. Once established how to introduce macrophages into skin models, different culture media were evaluated for their effects on primary fibroblasts, keratinocytes and macrophages, to identify a suitable medium composition for the culture of immunocompetent skin. The present work confirmed that each cell type requires a different supplement combination for maintaining functional features and showed for the first time that media that promote and maintain a mature skin structure have negative effects on primary macrophages. Skin differentiation media negatively affected macrophages in terms of viability, morphology, ability to respond to pro- and anti-inflammatory stimuli and to migrate through a collagen gel. The combination of wounded skin equivalents and macrophage-containing gels con-firmed that culture medium inhibits macrophage participation in the inflammatory response that oc-curs after wounding. The described macrophage inclusion method for immunocompetent skin creation is a promising approach for generating more relevant skin models. Further optimization of the co-cul-ture medium will potentially allow mimicking a physiological inflammatory response, enabling to eval-uate the effects novel drugs designed for improved healing on improved in vitro models.}, subject = {Haut}, language = {en} } @phdthesis{Grimm2019, author = {Grimm, Johannes}, title = {Autocrine and paracrine effects of BRAF inhibitor induced senescence in melanoma}, doi = {10.25972/OPUS-18116}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-181161}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {The FDA approval of targeted therapy with BRAFV600E inhibitors like vemurafenib and dabrafenib in 2011 has been the first major breakthrough in the treatment of metastatic melanoma since almost three decades. Despite increased progression free survival and elevated overall survival rates, complete responses are scarce due to resistance development approximately six months after the initial drug treatment. It was previously shown in our group that melanoma cells under vemurafenib pressure in vitro and in vivo exhibit features of drug-induced senescence. It is known that some cell types, which undergo this cell cycle arrest, develop a so-called senescence associated secretome and it has been reported that melanoma cell lines also upregulate the expression of different factors after senescence induction. This work describes the effect of the vemurafenib-induced secretome on cells. Conditioned supernatants of vemurafenib-treated cells increased the viability of naive fibroblast and melanoma cell lines. RNA analysis of donor melanoma cells revealed elevated transcriptional levels of FGF1, MMP2 and CCL2 in the majority of tested cell lines under vemurafenib pressure, and I could confirm the secretion of functional proteins. Similar observations were also done after MEK inhibition as well as in a combined BRAF and MEK inhibitor treatment situation. Interestingly, the transcription of other FGF ligands (FGF7, FGF17) was also elevated after MEK/ERK1/2 inhibition. As FGF receptors are therapeutically relevant, I focused on the analysis of FGFR-dependent processes in response to BRAF inhibition. Recombinant FGF1 increased the survival rate of melanoma cells under vemurafenib pressure, while inhibition of the FGFR pathway diminished the viability of melanoma cells in combination with vemurafenib and blocked the stimulatory effect of vemurafenib conditioned medium. The BRAF inhibitor induced secretome is regulated by active PI3K/AKT signaling, and the joint inhibition of mTor and BRAFV600E led to decreased senescence induction and to a diminished induction of the secretome-associated genes. In parallel, combined inhibition of MEK and PI3K also drastically decreased mRNA levels of the relevant secretome components back to basal levels. In summary, I could demonstrate that BRAF inhibitor treated melanoma cell lines acquire a specific PI3K/AKT dependent secretome, which is characterized by FGF1, CCL2 and MMP2. This secretome is able to stimulate other cells such as naive melanoma cells and fibroblasts and contributes to a better survival under drug pressure. These data are therapeutically highly relevant, as they imply the usage of novel drug combinations, especially specific FGFR inhibitors, with BRAF inhibitors in the clinic.}, subject = {Inhibitor}, language = {en} } @article{HeibyGoretzkiJohnsonetal.2019, author = {Heiby, Julia C. and Goretzki, Benedikt and Johnson, Christopher M. and Hellmich, Ute A. and Neuweiler, Hannes}, title = {Methionine in a protein hydrophobic core drives tight interactions required for assembly of spider silk}, series = {Nature Communications}, volume = {10}, journal = {Nature Communications}, doi = {10.1038/s41467-019-12365-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-202539}, pages = {4378}, year = {2019}, abstract = {Web spiders connect silk proteins, so-called spidroins, into fibers of extraordinary toughness. The spidroin N-terminal domain (NTD) plays a pivotal role in this process: it polymerizes spidroins through a complex mechanism of dimerization. Here we analyze sequences of spidroin NTDs and find an unusually high content of the amino acid methionine. We simultaneously mutate all methionines present in the hydrophobic core of a spidroin NTD from a nursery web spider's dragline silk to leucine. The mutated NTD is strongly stabilized and folds at the theoretical speed limit. The structure of the mutant is preserved, yet its ability to dimerize is substantially impaired. We find that side chains of core methionines serve to mobilize the fold, which can thereby access various conformations and adapt the association interface for tight binding. Methionine in a hydrophobic core equips a protein with the capacity to dynamically change shape and thus to optimize its function.}, language = {en} } @article{HeydarianYangSchweinlinetal.2019, author = {Heydarian, Motaharehsadat and Yang, Tao and Schweinlin, Matthias and Steinke, Maria and Walles, Heike and Rudel, Thomas and Kozjak-Pavlovic, Vera}, title = {Biomimetic human tissue model for long-term study of Neisseria gonorrhoeae infection}, series = {Frontiers in Microbiology}, volume = {10}, journal = {Frontiers in Microbiology}, number = {1740}, issn = {1664-302X}, doi = {10.3389/fmicb.2019.01740}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-197912}, year = {2019}, abstract = {Gonorrhea is the second most common sexually transmitted infection in the world and is caused by Gram-negative diplococcus Neisseria gonorrhoeae. Since N. gonorrhoeae is a human-specific pathogen, animal infection models are only of limited use. Therefore, a suitable in vitro cell culture model for studying the complete infection including adhesion, transmigration and transport to deeper tissue layers is required. In the present study, we generated three independent 3D tissue models based on porcine small intestinal submucosa (SIS) scaffold by co-culturing human dermal fibroblasts with human colorectal carcinoma, endometrial epithelial, and male uroepithelial cells. Functional analyses such as transepithelial electrical resistance (TEER) and FITC-dextran assay indicated the high barrier integrity of the created monolayer. The histological, immunohistochemical, and ultra-structural analyses showed that the 3D SIS scaffold-based models closely mimic the main characteristics of the site of gonococcal infection in human host including the epithelial monolayer, the underlying connective tissue, mucus production, tight junction, and microvilli formation. We infected the established 3D tissue models with different N. gonorrhoeae strains and derivatives presenting various phenotypes regarding adhesion and invasion. The results indicated that the disruption of tight junctions and increase in interleukin production in response to the infection is strain and cell type-dependent. In addition, the models supported bacterial survival and proved to be better suitable for studying infection over the course of several days in comparison to commonly used Transwell® models. This was primarily due to increased resilience of the SIS scaffold models to infection in terms of changes in permeability, cell destruction and bacterial transmigration. In summary, the SIS scaffold-based 3D tissue models of human mucosal tissues represent promising tools for investigating N. gonorrhoeae infections under close-to-natural conditions.}, language = {en} } @phdthesis{Hieke2019, author = {Hieke, Marie}, title = {Synaptic arrangements and potential communication partners of \(Drosophila's\) PDF-containing clock neurons within the accessory medulla}, doi = {10.25972/OPUS-17598}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-175988}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Endogenous clocks regulate physiological as well as behavioral rhythms within all organisms. They are well investigated in D. melanogaster on a molecular as well as anatomical level. The neuronal clock network within the brain represents the center for rhythmic activity control. One neuronal clock subgroup, the pigment dispersing factor (PDF) neurons, stands out for its importance in regulating rhythmic behavior. These neurons express the neuropeptide PDF (pigment dispersing factor). A small neuropil at the medulla's edge, the accessory medulla (AME), is of special interest, as it has been determined as the main center for clock control. It is not only highly innervated by the PDF neurons but also by terminals of all other clock neuron subgroups. Furthermore, terminals of the photoreceptors provide light information to the AME. Many different types of neurons converge within the AME and afterward spread to their next target. Thereby the AME is supplied with information from a variety of brain regions. Among these neurons are the aminergic ones whose receptors' are expressed in the PDF neurons. The present study sheds light onto putative synaptic partners and anatomical arrangements within the neuronal clock network, especially within the AME, as such knowledge is a prerequisite to understand circadian behavior. The aminergic neurons' conspicuous vicinity to the PDF neurons suggests synaptic communication among them. Thus, based on former anatomical studies regarding this issue detailed light microscopic studies have been performed. Double immunolabellings, analyses of the spatial relation of pre- and postsynaptic sites of the individual neuron populations with respect to each other and the identification of putative synaptic partners using GRASP reenforce the hypothesis of synaptic interactions within the AME between dopaminergic/ serotonergic neurons and the PDF neurons. To shed light on the synaptic partners I performed first steps in array tomography, as it allows terrific informative analyses of fluorescent signals on an ultrastructural level. Therefore, I tested different ways of sample preparation in order to achieve and optimize fluorescent signals on 100 nm thin tissue sections and I made overlays with electron microscopic images. Furthermore, I made assumptions about synaptic modulations within the neuronal clock network via glial cells. I detected their cell bodies in close vicinity to the AME and PDFcontaining clock neurons. It has already been shown that glial cells modulate the release of PDF from s-LNvs' terminals within the dorsal brain. On an anatomical level this modulation appears to exist also within the AME, as synaptic contacts that involve PDF-positive dendritic terminals are embedded into glial fibers. Intriguingly, these postsynaptic PDF fibers are often VIIAbstract part of dyadic or even multiple-contact sites in opposite to prolonged presynaptic active zonesimplicating complex neuronal interactions within the AME. To unravel possible mechanisms of such synaptic arrangements, I tried to localize the ABC transporter White. Its presence within glial cells would indicate a recycling mechanism of transmitted amines which allows their fast re-provision. Taken together, synapses accompanied by glial cells appear to be a common arrangement within the AME to regulate circadian behavior. The complexity of mechanisms that contribute in modulation of circadian information is reflected by the complex diversity of synaptic arrangements that involves obviously several types of neuron populations}, subject = {Taufliege}, language = {en} } @phdthesis{Horn2019, author = {Horn, Jessica}, title = {Molecular and functional characterization of the long non-coding RNA SSR42 in \(Staphylococcus\) \(aureus\)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-175778}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Staphylococcus aureus asymptomatically colonizes the skin and anterior nares of 20-30\% of the healthy human population. As an opportunistic human pathogen it elicits a variety of infections ranging from skin and soft tissue infections to highly severe manifestations such as pneumonia, endocarditis and osteomyelitis. Due to the emergence of multi resistant strains, treatment of staphylococcal infections becomes more and more challenging and the WHO therefore classified S. aureus as a "superbug". The variety of diseases triggered by S. aureus is the result of a versatile expression of a large set of virulence factors. The most prominent virulence factor is the cytotoxic and haemolytic pore-forming α-toxin whose expression is mediated by a complex regulatory network involving two-component systems such as the agr quorum-sensing system, accessory transcriptional regulators and alternative sigma-factors. However, the intricate regulatory network is not yet understood in its entirety. Recently, a transposon mutation screen identified the AraC-family transcriptional regulator 'Repressor of surface proteins' (Rsp) to regulate haemolysis, cytotoxicity and the expression of various virulence associated factors. Deletion of rsp was accompanied by a complete loss of transcription of a 1232 nt long non-coding RNA, SSR42. This doctoral thesis focuses on the molecular and functional characterization of SSR42. By analysing the transcriptome and proteome of mutants in either SSR42 or both SSR42 and rsp, as well as by complementation of SSR42 in trans, the ncRNA was identified as the main effector of Rsp-mediated virulence. Mutants in SSR42 exhibited strong effects on transcriptional and translational level when compared to wild-type bacteria. These changes resulted in phenotypic alterations such as strongly reduced haemolytic activity and cytotoxicity towards epithelial cells as well as reduced virulence in a murine infection model. Deletion of SSR42 further promoted the formation of small colony variants (SCV) during long term infection of endothelial cells and demonstrated the importance of this molecule for intracellular bacteria. The impact of this ncRNA on staphylococcal haemolysis was revealed to be executed by modulation of sae mRNA stability and by applying mutational studies functional domains within SSR42 were identified. Moreover, various stressors modulated the transcription of SSR42 and antibiotic challenge resulted in SSR42-dependently increased haemolysis and cytotoxicity. Transcription of SSR42 itself was found under control of various important global regulators including AgrA, SaeS, CodY and σB, thereby illustrating a central position in S. aureus virulence gene regulation. The present study thus demonstrates SSR42 as a global virulence regulatory RNA which is important for haemolysis, disease progression and adaption of S. aureus to intracellular conditions via formation of SCVs.}, subject = {Staphylococcus aureus}, language = {en} } @article{HornMitesserHovestadtetal.2019, author = {Horn, Melanie and Mitesser, Oliver and Hovestadt, Thomas and Yoshii, Taishi and Rieger, Dirk and Helfrich-F{\"o}rster, Charlotte}, title = {The circadian clock improves fitness in the fruit fly, Drosophila melanogaster}, series = {Frontiers in Physiology}, volume = {10}, journal = {Frontiers in Physiology}, number = {1374}, issn = {1664-042X}, doi = {10.3389/fphys.2019.01374}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-195738}, year = {2019}, abstract = {It is assumed that a properly timed circadian clock enhances fitness, but only few studies have truly demonstrated this in animals. We raised each of the three classical Drosophila period mutants for >50 generations in the laboratory in competition with wildtype flies. The populations were either kept under a conventional 24-h day or under cycles that matched the mutant's natural cycle, i.e., a 19-h day in the case of pers mutants and a 29-h day for perl mutants. The arrhythmic per0 mutants were grown together with wildtype flies under constant light that renders wildtype flies similar arrhythmic as the mutants. In addition, the mutants had to compete with wildtype flies for two summers in two consecutive years under outdoor conditions. We found that wildtype flies quickly outcompeted the mutant flies under the 24-h laboratory day and under outdoor conditions, but perl mutants persisted and even outnumbered the wildtype flies under the 29-h day in the laboratory. In contrast, pers and per0 mutants did not win against wildtype flies under the 19-h day and constant light, respectively. Our results demonstrate that wildtype flies have a clear fitness advantage in terms of fertility and offspring survival over the period mutants and - as revealed for perl mutants - this advantage appears maximal when the endogenous period resonates with the period of the environment. However, the experiments indicate that perl and pers persist at low frequencies in the population even under the 24-h day. This may be a consequence of a certain mating preference of wildtype and heterozygous females for mutant males and time differences in activity patterns between wildtype and mutants.}, language = {en} } @article{HovestadtThomasMitesseretal.2019, author = {Hovestadt, Thomas and Thomas, Jeremy A. and Mitesser, Oliver and Sch{\"o}nrogge, Karsten}, title = {Multiple host use and the dynamics of host-switching in host-parasite systems}, series = {Insect Conservation and Diversity}, volume = {12}, journal = {Insect Conservation and Diversity}, number = {6}, doi = {10.1111/icad.12374}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-204747}, pages = {511-522}, year = {2019}, abstract = {The link between multi-host use and host switching in host-parasite interactions is a continuing area of debate. Lycaenid butterflies in the genus Maculinea, for example, exploit societies of different Myrmica ant species across their ranges, but there is only rare evidence that they simultaneously utilise multiple hosts at a local site, even where alternative hosts are present. We present a simple population-genetic model accounting for the proportion of two alternative hosts and the fitness of parasite genotypes on each host. In agreement with standard models, we conclude that simultaneous host use is possible whenever fitness of heterozygotes on alternative hosts is not too low. We specifically focus on host-shifting dynamics when the frequency of hosts changes. We find that (i) host shifting may proceed so rapidly that multiple host use is unlikely to be observed, (ii) back and forth transition in host use can exhibit a hysteresis loop, (iii) the parasites' host use may not be proportional to local host frequencies and be restricted to the rarer host under some conditions, and (iv) that a substantial decline in parasite abundance may typically precede a shift in host use. We conclude that focusing not just on possible equilibrium conditions but also considering the dynamics of host shifting in non-equilibrium situations may provide added insights into host-parasite systems.}, language = {en} } @article{JurowichLichthardtKastneretal.2019, author = {Jurowich, Christian and Lichthardt, Sven and Kastner, Caroline and Haubitz, Imme and Prock, Andre and Filser, J{\"o}rg and Germer, Christoph-Thomas and Wiegering, Armin}, title = {Laparoscopic versus open right hemicolectomy in colon carcinoma: A propensity score analysis of the DGAV StuDoQ|ColonCancer registry}, series = {PLoS ONE}, volume = {14}, journal = {PLoS ONE}, number = {6}, doi = {10.1371/journal.pone.0218829}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-202184}, pages = {e0218829}, year = {2019}, abstract = {Objective To assess whether laparoscopy has any advantages over open resection for right-sided colon cancer. Summary background data Right hemicolectomy can be performed using either a conventional open or a minimally invasive laparoscopic technique. It is not clear whether these different access routes differ with regard to short-term postoperative outcomes. Methods Patients documented in the German Society for General and Visceral Surgery StuDoQ|ColonCancer registry who underwent right hemicolectomy were analyzed regarding early postoperative complications according to Clavien-Dindo (primary endpoint), operation (OP) time, length of postoperative hospital stay (LOS), MTL30 and number of lymph nodes retrieved (secondary endpoints). Results A total of 4.997 patients were identified as undergoing oncological right hemicolectomy without additional interventions. Of these, 4.062 (81.3\%) underwent open, 935 (18.7\%) laparoscopic surgery. Propensity score analysis showed a significantly shorter LOS (OR: 0.55 CI 95\%0.47-.64) and a significantly longer OP time (OR2.32 CI 1.98-2.71) for the laparoscopic route. Risk factors for postoperative complications, anastomotic insufficiency, ileus, reoperation and positive MTL30 were higher ASA status, higher age and increasing BMI. The surgical access route (open / lap) had no influence on these factors, but the laparoscopic group did have markedly fewer lymph nodes retrieved. Conclusion The present registry-based analysis could detect no relevant advantages for the minimally invasive laparoscopic access route. Further oncological analyses are needed to clarify the extent to which the smaller lymph node harvest in the laparoscopic group is accompanied by a poorer oncological outcome.}, language = {en} } @phdthesis{KaltdorfgebSchuch2019, author = {Kaltdorf [geb. Schuch], Kristin Verena}, title = {Mikroskopie, Bildverarbeitung und Automatisierung der Analyse von Vesikeln in \(C.\) \(elegans\) und anderen biologischen Strukturen}, doi = {10.25972/OPUS-16062}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-160621}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Thema dieser Thesis ist die Analyse sekretorischer Vesikelpools auf Ultrastrukturebene in unterschiedlichen biologischen Systemen. Der erste und zweite Teil dieser Arbeit fokussiert sich auf die Analyse synaptischer Vesikelpools in neuromuskul{\"a}ren Endplatten (NME) im Modellorganismus Caenorhabditis elegans. Dazu wurde Hochdruckgefrierung und Gefriersubstitution angewandt, um eine unverz{\"u}gliche Immobilisation der Nematoden und somit eine Fixierung im nahezu nativen Zustand zu gew{\"a}hrleisten. Anschließend wurden dreidimensionale Aufnahmen der NME mittels Elektronentomographie erstellt. Im ersten Teil dieser Arbeit wurden junge adulte, wildtypische C. elegans Hermaphroditen mit Septin-Mutanten verglichen. Um eine umfassende Analyse mit hoher Stichprobenzahl zu erm{\"o}glichen und eine automatisierte L{\"o}sung f{\"u}r {\"a}hnliche Untersuchungen von Vesikelpools bereit zu stellen wurde eine Software namens 3D ART VeSElecT zur automatisierten Vesikelpoolanalyse entwickelt. Die Software besteht aus zwei Makros f{\"u}r ImageJ, eines f{\"u}r die Registrierung der Vesikel und eines zur Charakterisierung. Diese Trennung in zwei separate Schritte erm{\"o}glicht einen manuellen Verbesserungsschritt zum Entfernen falsch positiver Vesikel. Durch einen Vergleich mit manuell ausgewerteten Daten neuromuskul{\"a}rer Endplatten von larvalen Stadien des Modellorganismus Zebrafisch (Danio rerio) konnte erfolgreich die Funktionalit{\"a}t der Software bewiesen werden. Die Analyse der neuromuskul{\"a}ren Endplatten in C. elegans ergab kleinere synaptische Vesikel und dichtere Vesikelpools in den Septin-Mutanten verglichen mit Wildtypen. Im zweiten Teil der Arbeit wurden neuromuskul{\"a}rer Endplatten junger adulter C. elegans Hermaphroditen mit Dauerlarven verglichen. Das Dauerlarvenstadium ist ein spezielles Stadium, welches durch widrige Umweltbedingungen induziert wird und in dem C. elegans {\"u}ber mehrere Monate ohne Nahrungsaufnahme {\"u}berleben kann. Da hier der Vergleich der Abundanz zweier Vesikelarten, der „clear-core"-Vesikel (CCV) und der „dense-core"-Vesikel (DCV), im Fokus stand wurde eine Erweiterung von 3D ART VeSElecT entwickelt, die einen „Machine-Learning"-Algorithmus zur automatisierten Klassifikation der Vesikel integriert. Durch die Analyse konnten kleinere Vesikel, eine erh{\"o}hte Anzahl von „dense-core"-Vesikeln, sowie eine ver{\"a}nderte Lokalisation der DCV in Dauerlarven festgestellt werden. Im dritten Teil dieser Arbeit wurde untersucht ob die f{\"u}r synaptische Vesikelpools konzipierte Software auch zur Analyse sekretorischer Vesikel in Thrombozyten geeignet ist. Dazu wurden zweidimensionale und dreidimensionale Aufnahmen am Transmissionselektronenmikroskop erstellt und verglichen. Die Untersuchung ergab, dass hierf{\"u}r eine neue Methodik entwickelt werden muss, die zwar auf den vorherigen Arbeiten prinzipiell aufbauen kann, aber den besonderen Herausforderungen der Bilderkennung sekretorischer Vesikel aus Thrombozyten gerecht werden muss.}, subject = {Mikroskopie}, language = {de} } @phdthesis{Kaymak2019, author = {Kaymak, Irem}, title = {Identification of metabolic liabilities in 3D models of cancer}, doi = {10.25972/OPUS-18154}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-181544}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Inefficient vascularisation of solid tumours leads to the formation of oxygen and nutrient gradients. In order to mimic this specific feature of the tumour microenvironment, a multicellular tumour spheroid (SPH) culture system was used. These experiments were implemented in p53 isogenic colon cancer cell lines (HCT116 p53 +/+ and HCT116 p53-/-) since Tp53 has important regulatory functions in tumour metabolism. First, the characteristics of the cells cultured as monolayers and as spheroids were investigated by using RNA sequencing and metabolomics to compare gene expression and metabolic features of cells grown in different conditions. This analysis showed that certain features of gene expression found in tumours are also present in spheroids but not in monolayer cultures, including reduced proliferation and induction of hypoxia related genes. Moreover, comparison between the different genotypes revealed that the expression of genes involved in cholesterol homeostasis is induced in p53 deficient cells compared to p53 wild type cells and this difference was only detected in spheroids and tumour samples but not in monolayer cultures. In addition, it was established that loss of p53 leads to the induction of enzymes of the mevalonate pathway via activation of the transcription factor SREBP2, resulting in a metabolic rewiring that supports the generation of ubiquinone (coenzyme Q10). An adequate supply of ubiquinone was essential to support mitochondrial electron transport and pyrimidine biosynthesis in p53 deficient cancer cells under conditions of metabolic stress. Moreover, inhibition of the mevalonate pathway using statins selectively induced oxidative stress and apoptosis in p53 deficient colon cancer cells exposed to oxygen and nutrient deprivation. This was caused by ubiquinone being required for electron transfer by dihydroorotate dehydrogenase, an essential enzyme of the pyrimidine nucleotide biosynthesis pathway. Supplementation with exogenous nucleosides relieved the demand for electron transfer and restored viability of p53 deficient cancer cells under metabolic stress. Moreover, the mevalonate pathway was also essential for the synthesis of ubiquinone for nucleotide biosynthesis to support growth of intestinal tumour organoids. Together, these findings highlight the importance of the mevalonate pathway in cancer cells and provide molecular evidence for an enhanced sensitivity towards the inhibition of mitochondrial electron transfer in tumour-like metabolic environments.}, subject = {Tumor}, language = {en} } @article{KehrbergerHolzschuh2019, author = {Kehrberger, Sandra and Holzschuh, Andrea}, title = {How does timing of flowering affect competition for pollinators, flower visitation and seed set in an early spring grassland plant?}, series = {Scientific Reports}, volume = {9}, journal = {Scientific Reports}, doi = {10.1038/s41598-019-51916-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-202549}, pages = {15593}, year = {2019}, abstract = {Knowledge on how the timing of flowering is related to plant fitness and species interactions is crucial to understand consequences of phenological shifts as they occur under climate change. Early flowering plants may face advantages of low competition for pollinators and disadvantages of low pollinator abundances and unfavourable weather conditions. However, it is unknown how this trade-off changes over the season and how the timing affects reproductive success. On eight grasslands we recorded intra-seasonal changes in pollinators, co-flowering plants, weather conditions, flower visitation rates, floral longevity and seed set of Pulsatilla vulgaris. Although bee abundances and the number of pollinator-suitable hours were low at the beginning of the season, early flowers of P. vulgaris received higher flower visitation rates and estimated total number of bee visits than later flowers, which was positively related to seed set. Flower visitation rates decreased over time and with increasing number of co-flowering plants, which competed with P. vulgaris for pollinators. Low interspecific competition for pollinators seems to be a major driver for early flowering dates. Thus, non-synchronous temporal shifts of co-flowering plants as they may occur under climate warming can be expected to strongly affect plant-pollinator interactions and the fitness of the involved plants.}, language = {en} } @article{KehrbergerHolzschuh2019, author = {Kehrberger, Sandra and Holzschuh, Andrea}, title = {Warmer temperatures advance flowering in a spring plant more strongly than emergence of two solitary spring bee species}, series = {PLoS ONE}, volume = {14}, journal = {PLoS ONE}, number = {6}, doi = {10.1371/journal.pone.0218824}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201165}, pages = {e0218824}, year = {2019}, abstract = {Climate warming has the potential to disrupt plant-pollinator interactions or to increase competition of co-flowering plants for pollinators, due to species-specific phenological responses to temperature. However, studies focusing on the effect of temperature on solitary bee emergence and the flowering onset of their food plants under natural conditions are still rare. We studied the effect of temperature on the phenology of the two spring bees Osmia cornuta and Osmia bicornis, by placing bee cocoons on eleven grasslands differing in mean site temperature. On seven grasslands, we additionally studied the effect of temperature on the phenology of the red-list plant Pulsatilla vulgaris, which was the first flowering plant, and of co-flowering plants with later flowering. With a warming of 0.1°C, the abundance-weighted mean emergence of O. cornuta males advanced by 0.4 days. Females of both species did not shift their emergence. Warmer temperatures advanced the abundance-weighted mean flowering of P. vulgaris by 1.3 days per 0.1°C increase, but did not shift flowering onset of co-flowering plants. Competition for pollinators between P. vulgaris and co-flowering plants does not increase within the studied temperature range. We demonstrate that temperature advances plant flowering more strongly than bee emergence suggesting an increased risk of pollinator limitation for the first flowers of P. vulgaris.}, language = {en} } @article{KhayenkoMaric2019, author = {Khayenko, Vladimir and Maric, Hans Michael}, title = {Targeting GABA\(_A\)R-associated proteins: new modulators, labels and concepts}, series = {Frontiers in Molecular Neuroscience}, volume = {12}, journal = {Frontiers in Molecular Neuroscience}, number = {162}, doi = {10.3389/fnmol.2019.00162}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201876}, year = {2019}, abstract = {γ-aminobutyric acid type A receptors (GABA\(_A\)Rs) are the major mediators of synaptic inhibition in the brain. Aberrant GABA\(_A\)R activity or regulation is observed in various neurodevelopmental disorders, neurodegenerative diseases and mental illnesses, including epilepsy, Alzheimer's and schizophrenia. Benzodiazepines, anesthetics and other pharmaceutics targeting these receptors find broad clinical use, but their inherent lack of receptor subtype specificity causes unavoidable side effects, raising a need for new or adjuvant medications. In this review article, we introduce a new strategy to modulate GABAeric signaling: targeting the intracellular protein interactors of GABA\(_A\)Rs. Of special interest are scaffolding, anchoring and supporting proteins that display high GABA\(_A\)R subtype specificity. Recent efforts to target gephyrin, the major intracellular integrator of GABAergic signaling, confirm that GABA\(_A\)R-associated proteins can be successfully targeted through diverse molecules, including recombinant proteins, intrabodies, peptide-based probes and small molecules. Small-molecule artemisinins and peptides derived from endogenous interactors, that specifically target the universal receptor binding site of gephyrin, acutely affect synaptic GABA\(_A\)R numbers and clustering, modifying neuronal transmission. Interference with GABA\(_A\)R trafficking provides another way to modulate inhibitory signaling. Peptides blocking the binding site of GABA\(_A\)R to AP2 increase the surface concentration of GABA\(_A\)R clusters and enhance GABAergic signaling. Engineering of gephyrin binding peptides delivered superior means to interrogate neuronal structure and function. Fluorescent peptides, designed from gephyrin binders, enable live neuronal staining and visualization of gephyrin in the post synaptic sites with submicron resolution. We anticipate that in the future, novel fluorescent probes, with improved size and binding efficiency, may find wide application in super resolution microscopy studies, enlightening the nanoscale architecture of the inhibitory synapse. Broader studies on GABA\(_A\)R accessory proteins and the identification of the exact molecular binding interfaces and affinities will advance the development of novel GABA\(_A\)R modulators and following in vivo studies will reveal their clinical potential as adjuvant or stand-alone drugs.}, language = {en} } @article{KimAmoresKangetal.2019, author = {Kim, Bo-Mi and Amores, Angel and Kang, Seunghyun and Ahn, Do-Hwan and Kim, Jin-Hyoung and Kim, Il-Chan and Lee, Jun Hyuck and Lee, Sung Gu and Lee, Hyoungseok and Lee, Jungeun and Kim, Han-Woo and Desvignes, Thomas and Batzel, Peter and Sydes, Jason and Titus, Tom and Wilson, Catherine A. and Catchen, Julian M. and Warren, Wesley C. and Schartl, Manfred and Detrich, H. William III and Postlethwait, John H. and Park, Hyun}, title = {Antarctic blackfin icefish genome reveals adaptations to extreme environments}, series = {Nature Ecology \& Evolution}, volume = {3}, journal = {Nature Ecology \& Evolution}, doi = {10.1038/s41559-019-0812-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-325811}, pages = {469-478}, year = {2019}, abstract = {Icefishes (suborder Notothenioidei; family Channichthyidae) are the only vertebrates that lack functional haemoglobin genes and red blood cells. Here, we report a high-quality genome assembly and linkage map for the Antarctic blackfin icefish Chaenocephalus aceratus, highlighting evolved genomic features for its unique physiology. Phylogenomic analysis revealed that Antarctic fish of the teleost suborder Notothenioidei, including icefishes, diverged from the stickleback lineage about 77 million years ago and subsequently evolved cold-adapted phenotypes as the Southern Ocean cooled to sub-zero temperatures. Our results show that genes involved in protection from ice damage, including genes encoding antifreeze glycoprotein and zona pellucida proteins, are highly expanded in the icefish genome. Furthermore, genes that encode enzymes that help to control cellular redox state, including members of the sod3 and nqo1 gene families, are expanded, probably as evolutionary adaptations to the relatively high concentration of oxygen dissolved in cold Antarctic waters. In contrast, some crucial regulators of circadian homeostasis (cry and per genes) are absent from the icefish genome, suggesting compromised control of biological rhythms in the polar light environment. The availability of the icefish genome sequence will accelerate our understanding of adaptation to extreme Antarctic environments.}, language = {en} } @article{KrausBrinkSiegel2019, author = {Kraus, Amelie J. and Brink, Benedikt G. and Siegel, T. Nicolai}, title = {Efficient and specific oligo-based depletion of rRNA}, series = {Scientific Reports}, volume = {9}, journal = {Scientific Reports}, doi = {10.1038/s41598-019-48692-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-224829}, year = {2019}, abstract = {In most organisms, ribosomal RNA (rRNA) contributes to >85\% of total RNA. Thus, to obtain useful information from RNA-sequencing (RNA-seq) analyses at reasonable sequencing depth, typically, mature polyadenylated transcripts are enriched or rRNA molecules are depleted. Targeted depletion of rRNA is particularly useful when studying transcripts lacking a poly(A) tail, such as some non-coding RNAs (ncRNAs), most bacterial RNAs and partially degraded or immature transcripts. While several commercially available kits allow effective rRNA depletion, their efficiency relies on a high degree of sequence homology between oligonucleotide probes and the target RNA. This restricts the use of such kits to a limited number of organisms with conserved rRNA sequences. In this study we describe the use of biotinylated oligos and streptavidin-coated paramagnetic beads for the efficient and specific depletion of trypanosomal rRNA. Our approach reduces the levels of the most abundant rRNA transcripts to less than 5\% with minimal off-target effects. By adjusting the sequence of the oligonucleotide probes, our approach can be used to deplete rRNAs or other abundant transcripts independent of species. Thus, our protocol provides a useful alternative for rRNA removal where enrichment of polyadenylated transcripts is not an option and commercial kits for rRNA are not available.}, language = {en} } @article{KrebsBehrmannKalogirouetal.2019, author = {Krebs, Markus and Behrmann, Christoph and Kalogirou, Charis and Sokolakis, Ioannis and Kneitz, Susanne and Kruithof-de Julio, Marianna and Zoni, Eugenio and Rech, Anne and Schilling, Bastian and K{\"u}bler, Hubert and Spahn, Martin and Kneitz, Burkhard}, title = {miR-221 Augments TRAIL-mediated apoptosis in prostate cancer cells by inducing endogenous TRAIL expression and targeting the functional repressors SOCS3 and PIK3R1}, series = {BioMed Research International}, volume = {2019}, journal = {BioMed Research International}, doi = {10.1155/2019/6392748}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-202480}, pages = {6392748}, year = {2019}, abstract = {miR-221 is regarded as an oncogene in many malignancies, and miR-221-mediated resistance towards TRAIL was one of the first oncogenic roles shown for this small noncoding RNA. In contrast, miR-221 is downregulated in prostate cancer (PCa), thereby implying a tumour suppressive function. By using proliferation and apoptosis assays, we show a novel feature of miR-221 in PCa cells: instead of inducing TRAIL resistance, miR-221 sensitized cells towards TRAIL-induced proliferation inhibition and apoptosis induction. Partially responsible for this effect was the interferon-mediated gene signature, which among other things contained an endogenous overexpression of the TRAIL encoding gene TNFSF10. This TRAIL-friendly environment was provoked by downregulation of the established miR-221 target gene SOCS3. Moreover, we introduced PIK3R1 as a target gene of miR-221 in PCa cells. Proliferation assays showed that siRNA-mediated downregulation of SOCS3 and PIK3R1 mimicked the effect of miR-221 on TRAIL sensitivity. Finally, Western blotting experiments confirmed lower amounts of phospho-Akt after siRNA-mediated downregulation of PIK3R1 in PC3 cells. Our results further support the tumour suppressing role of miR-221 in PCa, since it sensitises PCa cells towards TRAIL by regulating the expression of the oncogenes SOCS3 and PIK3R1. Given the TRAIL-inhibiting effect of miR-221 in various cancer entities, our results suggest that the influence of miR-221 on TRAIL-mediated apoptosis is highly context- and entity-dependent.}, language = {en} }