@article{WallaschekReuterSilkenatetal.2021, author = {Wallaschek, Nina and Reuter, Saskia and Silkenat, Sabrina and Wolf, Katharina and Niklas, Carolin and {\"O}zge, Kayisoglu and Aguilar, Carmen and Wiegering, Armin and Germer, Christoph-Thomas and Kircher, Stefan and Rosenwald, Andreas and Shannon-Lowe, Claire and Bartfeld, Sina}, title = {Ephrin receptor A2, the epithelial receptor for Epstein-Barr virus entry, is not available for efficient infection in human gastric organoids}, series = {PLoS Pathogens}, volume = {17}, journal = {PLoS Pathogens}, number = {2}, doi = {10.1371/journal.ppat.1009210}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259206}, pages = {e1009210}, year = {2021}, abstract = {Epstein-Barr virus (EBV) is best known for infection of B cells, in which it usually establishes an asymptomatic lifelong infection, but is also associated with the development of multiple B cell lymphomas. EBV also infects epithelial cells and is associated with all cases of undifferentiated nasopharyngeal carcinoma (NPC). EBV is etiologically linked with at least 8\% of gastric cancer (EBVaGC) that comprises a genetically and epigenetically distinct subset of GC. Although we have a very good understanding of B cell entry and lymphomagenesis, the sequence of events leading to EBVaGC remains poorly understood. Recently, ephrin receptor A2 (EPHA2) was proposed as the epithelial cell receptor on human cancer cell lines. Although we confirm some of these results, we demonstrate that EBV does not infect healthy adult stem cell-derived gastric organoids. In matched pairs of normal and cancer-derived organoids from the same patient, EBV only reproducibly infected the cancer organoids. While there was no clear pattern of differential expression between normal and cancer organoids for EPHA2 at the RNA and protein level, the subcellular location of the protein differed markedly. Confocal microscopy showed EPHA2 localization at the cell-cell junctions in primary cells, but not in cancer cell lines. Furthermore, histologic analysis of patient tissue revealed the absence of EBV in healthy epithelium and presence of EBV in epithelial cells from inflamed tissue. These data suggest that the EPHA2 receptor is not accessible to EBV on healthy gastric epithelial cells with intact cell-cell contacts, but either this or another, yet to be identified receptor may become accessible following cellular changes induced by inflammation or transformation, rendering changes in the cellular architecture an essential prerequisite to EBV infection.}, language = {en} } @article{PernitzschAlzheimerBremeretal.2021, author = {Pernitzsch, Sandy R. and Alzheimer, Mona and Bremer, Belinda U. and Robbe-Saule, Marie and De Reuse, Hilde and Sharma, Cynthia M.}, title = {Small RNA mediated gradual control of lipopolysaccharide biosynthesis affects antibiotic resistance in Helicobacter pylori}, series = {Nature Communications}, volume = {12}, journal = {Nature Communications}, number = {1}, doi = {10.1038/s41467-021-24689-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-261536}, year = {2021}, abstract = {The small, regulatory RNA RepG (Regulator of polymeric G-repeats) regulates the expression of the chemotaxis receptor TlpB in Helicobacter pylori by targeting a variable G-repeat in the tlpB mRNA leader. Here, we show that RepG additionally controls lipopolysaccharide (LPS) phase variation by also modulating the expression of a gene (hp0102) that is co-transcribed with tlpB. The hp0102 gene encodes a glycosyltransferase required for LPS O-chain biosynthesis and in vivo colonization of the mouse stomach. The G-repeat length defines a gradual (rather than ON/OFF) control of LPS biosynthesis by RepG, and leads to gradual resistance to a membrane-targeting antibiotic. Thus, RepG-mediated modulation of LPS structure might impact host immune recognition and antibiotic sensitivity, thereby helping H. pylori to adapt and persist in the host. The small RNA RepG modulates expression of chemotaxis receptor TlpB in Helicobacter pylori by targeting a length-variable G-repeat in the tlpB mRNA. Here, Pernitzsch et al. show that RepG also gradually controls lipopolysaccharide biosynthesis, antibiotic susceptibility, and in-vivo colonization of the stomach, by regulating a gene that is co-transcribed with tlpB.}, language = {en} } @article{MottolaRamirezZavalaHuenningeretal.2021, author = {Mottola, Austin and Ram{\´i}rez-Zavala, Bernardo and H{\"u}nninger, Kerstin and Kurzai, Oliver and Morschh{\"a}user, Joachim}, title = {The zinc cluster transcription factor Czf1 regulates cell wall architecture and integrity in Candida albicans}, series = {Molecular Microbiology}, volume = {116}, journal = {Molecular Microbiology}, number = {2}, doi = {10.1111/mmi.14727}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259583}, pages = {483-497}, year = {2021}, abstract = {The fungal cell wall is essential for the maintenance of cellular integrity and mediates interactions of the cells with the environment. It is a highly flexible organelle whose composition and organization is modulated in response to changing growth conditions. In the pathogenic yeast Candida albicans, a network of signaling pathways regulates the structure of the cell wall, and mutants with defects in these pathways are hypersensitive to cell wall stress. By harnessing a library of genetically activated forms of all C. albicans zinc cluster transcription factors, we found that a hyperactive Czf1 rescued the hypersensitivity to cell wall stress of different protein kinase deletion mutants. The hyperactive Czf1 induced the expression of many genes with cell wall-related functions and caused visible changes in the cell wall structure. C. albicans czf1Δ mutants were hypersensitive to the antifungal drug caspofungin, which inhibits cell wall biosynthesis. The changes in cell wall architecture caused by hyperactivity or absence of Czf1 resulted in an increased recognition of C. albicans by human neutrophils. Our results show that Czf1, which is known as a regulator of filamentous growth and white-opaque switching, controls the expression of cell wall genes and modulates the architecture of the cell wall.}, language = {en} } @article{Bartfeld2021, author = {Bartfeld, Sina}, title = {Realizing the potential of organoids — an interview with Hans Clevers}, series = {Journal of Molecular Medicine}, volume = {99}, journal = {Journal of Molecular Medicine}, issn = {Journal of Molecular Medicine}, doi = {10.1007/s00109-020-02025-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-235804}, pages = {443-447}, year = {2021}, abstract = {No abstract available.}, language = {en} } @article{GuptaSrivastavaOsmanogluetal.2021, author = {Gupta, Shishir K. and Srivastava, Mugdha and Osmanoglu, {\"O}zge and Xu, Zhuofei and Brakhage, Axel A. and Dandekar, Thomas}, title = {Aspergillus fumigatus versus genus Aspergillus: conservation, adaptive evolution and specific virulence genes}, series = {Microorganisms}, volume = {9}, journal = {Microorganisms}, number = {10}, issn = {2076-2607}, doi = {10.3390/microorganisms9102014}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-246318}, year = {2021}, abstract = {Aspergillus is an important fungal genus containing economically important species, as well as pathogenic species of animals and plants. Using eighteen fungal species of the genus Aspergillus, we conducted a comprehensive investigation of conserved genes and their evolution. This also allows us to investigate the selection pressure driving the adaptive evolution in the pathogenic species A. fumigatus. Among single-copy orthologs (SCOs) for A. fumigatus and the closely related species A. fischeri, we identified 122 versus 50 positively selected genes (PSGs), respectively. Moreover, twenty conserved genes of unknown function were established to be positively selected and thus important for adaption. A. fumigatus PSGs interacting with human host proteins show over-representation of adaptive, symbiosis-related, immunomodulatory and virulence-related pathways, such as the TGF-β pathway, insulin receptor signaling, IL1 pathway and interfering with phagosomal GTPase signaling. Additionally, among the virulence factor coding genes, secretory and membrane protein-coding genes in multi-copy gene families, 212 genes underwent positive selection and also suggest increased adaptation, such as fungal immune evasion mechanisms (aspf2), siderophore biosynthesis (sidD), fumarylalanine production (sidE), stress tolerance (atfA) and thermotolerance (sodA). These genes presumably contribute to host adaptation strategies. Genes for the biosynthesis of gliotoxin are shared among all the close relatives of A. fumigatus as an ancient defense mechanism. Positive selection plays a crucial role in the adaptive evolution of A. fumigatus. The genome-wide profile of PSGs provides valuable targets for further research on the mechanisms of immune evasion, antimycotic targeting and understanding fundamental virulence processes.}, language = {en} } @article{DischingerHeckelBischleretal.2021, author = {Dischinger, Ulrich and Heckel, Tobias and Bischler, Thorsten and Hasinger, Julia and K{\"o}nigsrainer, Malina and Schmitt-B{\"o}hrer, Angelika and Otto, Christoph and Fassnacht, Martin and Seyfried, Florian and Hankir, Mohammed Khair}, title = {Roux-en-Y gastric bypass and caloric restriction but not gut hormone-based treatments profoundly impact the hypothalamic transcriptome in obese rats}, series = {Nutrients}, volume = {14}, journal = {Nutrients}, number = {1}, issn = {2072-6643}, doi = {10.3390/nu14010116}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-252392}, year = {2021}, abstract = {Background: The hypothalamus is an important brain region for the regulation of energy balance. Roux-en-Y gastric bypass (RYGB) surgery and gut hormone-based treatments are known to reduce body weight, but their effects on hypothalamic gene expression and signaling pathways are poorly studied. Methods: Diet-induced obese male Wistar rats were randomized into the following groups: RYGB, sham operation, sham + body weight-matched (BWM) to the RYGB group, osmotic minipump delivering PYY3-36 (0.1 mg/kg/day), liraglutide s.c. (0.4 mg/kg/day), PYY3-36 + liraglutide, and saline. All groups (except BWM) were kept on a free choice of high- and low-fat diets. Four weeks after interventions, hypothalami were collected for RNA sequencing. Results: While rats in the RYGB, BWM, and PYY3-36 + liraglutide groups had comparable reductions in body weight, only RYGB and BWM treatment had a major impact on hypothalamic gene expression. In these groups, hypothalamic leptin receptor expression as well as the JAK-STAT, PI3K-Akt, and AMPK signaling pathways were upregulated. No significant changes could be detected in PYY3-36 + liraglutide-, liraglutide-, and PYY-treated groups. Conclusions: Despite causing similar body weight changes compared to RYGB and BWM, PYY3-36 + liraglutide treatment does not impact hypothalamic gene expression. Whether this striking difference is favorable or unfavorable to metabolic health in the long term requires further investigation.}, language = {en} } @article{CorreiaSantosBischlerWestermannetal.2021, author = {Correia Santos, Sara and Bischler, Thorsten and Westermann, Alexander J. and Vogel, J{\"o}rg}, title = {MAPS integrates regulation of actin-targeting effector SteC into the virulence control network of Salmonella small RNA PinT}, series = {Cell Reports}, volume = {34}, journal = {Cell Reports}, number = {5}, doi = {10.1016/j.celrep.2021.108722}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259134}, pages = {108722}, year = {2021}, abstract = {A full understanding of the contribution of small RNAs (sRNAs) to bacterial virulence demands knowledge of their target suites under infection-relevant conditions. Here, we take an integrative approach to capturing targets of the Hfq-associated sRNA PinT, a known post-transcriptional timer of the two major virulence programs of Salmonella enterica. Using MS2 affinity purification and RNA sequencing (MAPS), we identify PinT ligands in bacteria under in vitro conditions mimicking specific stages of the infection cycle and in bacteria growing inside macrophages. This reveals PinT-mediated translational inhibition of the secreted effector kinase SteC, which had gone unnoticed in previous target searches. Using genetic, biochemical, and microscopic assays, we provide evidence for PinT-mediated repression of steC mRNA, eventually delaying actin rearrangements in infected host cells. Our findings support the role of PinT as a central post-transcriptional regulator in Salmonella virulence and illustrate the need for complementary methods to reveal the full target suites of sRNAs.}, language = {en} } @article{WenckerMarincolaSchoenfelderetal.2021, author = {Wencker, Freya D. R and Marincola, Gabriella and Schoenfelder, Sonja M. K. and Maaß, Sandra and Becher, D{\"o}rte and Ziebuhr, Wilma}, title = {Another layer of complexity in Staphylococcus aureus methionine biosynthesis control: unusual RNase III-driven T-box riboswitch cleavage determines met operon mRNA stability and decay}, series = {Nucleic Acids Research}, volume = {49}, journal = {Nucleic Acids Research}, number = {4}, doi = {10.1093/nar/gkaa1277}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259029}, pages = {2192-2212}, year = {2021}, abstract = {In Staphylococcus aureus, de novo methionine biosynthesis is regulated by a unique hierarchical pathway involving stringent-response controlled CodY repression in combination with a T-box riboswitch and RNA decay. The T-box riboswitch residing in the 5′ untranslated region (met leader RNA) of the S. aureus metICFE-mdh operon controls downstream gene transcription upon interaction with uncharged methionyl-tRNA. met leader and metICFE-mdh (m)RNAs undergo RNase-mediated degradation in a process whose molecular details are poorly understood. Here we determined the secondary structure of the met leader RNA and found the element to harbor, beyond other conserved T-box riboswitch structural features, a terminator helix which is target for RNase III endoribonucleolytic cleavage. As the terminator is a thermodynamically highly stable structure, it also forms posttranscriptionally in met leader/ metICFE-mdh read-through transcripts. Cleavage by RNase III releases the met leader from metICFE-mdh mRNA and initiates RNase J-mediated degradation of the mRNA from the 5′-end. Of note, metICFE-mdh mRNA stability varies over the length of the transcript with a longer lifespan towards the 3′-end. The obtained data suggest that coordinated RNA decay represents another checkpoint in a complex regulatory network that adjusts costly methionine biosynthesis to current metabolic requirements.}, language = {en} } @article{MarincolaJaschkowitzKieningeretal.2021, author = {Marincola, Gabriella and Jaschkowitz, Greta and Kieninger, Ann-Katrin and Wencker, Freya D.R. and Feßler, Andrea T. and Schwarz, Stefan and Ziebuhr, Wilma}, title = {Plasmid-Chromosome Crosstalk in Staphylococcus aureus: A Horizontally Acquired Transcription Regulator Controls Polysaccharide Intercellular Adhesin-Mediated Biofilm Formation}, series = {Frontiers in Cellular and Infection Microbiology}, volume = {11}, journal = {Frontiers in Cellular and Infection Microbiology}, issn = {2235-2988}, doi = {10.3389/fcimb.2021.660702}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-232903}, year = {2021}, abstract = {Livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) of clonal complex CC398 typically carry various antimicrobial resistance genes, many of them located on plasmids. In the bovine LA-MRSA isolate Rd11, we previously identified plasmid pAFS11 in which resistance genes are co-localized with a novel ica-like gene cluster, harboring genes required for polysaccharide intercellular adhesin (PIA)-mediated biofilm formation. The ica genes on pAFS11 were acquired in addition to a pre-existing ica locus on the S. aureus Rd11 chromosomal DNA. Both loci consist of an icaADBC operon and icaR, encoding a corresponding icaADBC repressor. Despite carrying two biofilm gene copies, strain Rd11 did not produce PIA and transformation of pAFS11 into another S. aureus strain even slightly diminished PIA-mediated biofilm formation. By focusing on the molecular background of the biofilm-negative phenotype of pAFS11-carrying S. aureus, we identified the pAFS11-borne ica locus copy as functionally fully active. However, transcription of both plasmid- and core genome-derived icaADBC operons were efficiently suppressed involving IcaR. Surprisingly, although being different on the amino acid sequence level, the two IcaR repressor proteins are mutually replaceable and are able to interact with the icaA promoter region of the other copy. We speculate that this regulatory crosstalk causes the biofilm-negative phenotype in S. aureus Rd11. The data shed light on an unexpected regulatory interplay between pre-existing and newly acquired DNA traits in S. aureus. This also raises interesting general questions regarding functional consequences of gene transfer events and their putative implications for the adaptation and evolution of bacterial pathogens.}, language = {en} } @article{MasotaVoggOhlsenetal.2021, author = {Masota, Nelson E. and Vogg, Gerd and Ohlsen, Knut and Holzgrabe, Ulrike}, title = {Reproducibility challenges in the search for antibacterial compounds from nature}, series = {PLoS One}, volume = {16}, journal = {PLoS One}, number = {7}, doi = {10.1371/journal.pone.0255437}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-260239}, year = {2021}, abstract = {Background Reproducibility of reported antibacterial activities of plant extracts has long remained questionable. Although plant-related factors should be well considered in serious pharmacognostic research, they are often not addressed in many research papers. Here we highlight the challenges in reproducing antibacterial activities of plant extracts. Methods Plants with reported antibacterial activities of interest were obtained from a literature review. Antibacterial activities against Escherichia coli and Klebsiella pneumoniae were tested using extracts' solutions in 10\% DMSO and acetone. Compositions of working solutions from both solvents were established using LC-MS analysis. Moreover, the availability of details likely to affect reproducibility was evaluated in articles which reported antibacterial activities of studied plants. Results Inhibition of bacterial growth at MIC of 256-1024 μg/mL was observed in only 15.4\% of identical plant species. These values were 4-16-fold higher than those reported earlier. Further, 18.2\% of related plant species had MICs of 128-256 μg/mL. Besides, 29.2\% and 95.8\% of the extracts were soluble to sparingly soluble in 10\% DMSO and acetone, respectively. Extracts' solutions in both solvents showed similar qualitative compositions, with differing quantities of corresponding phytochemicals. Details regarding seasons and growth state at collection were missing in 65\% and 95\% of evaluated articles, respectively. Likewise, solvents used to dissolve the extracts were lacking in 30\% of the articles, whereas 40\% of them used unidentified bacterial isolates. Conclusion Reproducibility of previously reported activities from plants' extracts is a multi-factorial aspect. Thus, collective approaches are necessary in addressing the highlighted challenges.}, language = {en} } @phdthesis{Mottola2021, author = {Mottola, Austin}, title = {Molecular characterization of the SNF1 signaling pathway in \(Candida\) \(albicans\)}, doi = {10.25972/OPUS-23809}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-238098}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {The fungus Candida albicans is a typical member of the human microbiota, where it usually behaves as a commensal. It can also become pathogenic; often causing minor superficial infections in healthy people, but also potentially fatal invasive systemic infections in immunocompromised people. Unfortunately, there is only a fairly limited set of antifungal drugs, and evolution of drug resistance threatens their efficacy. Greater understanding of the mechanisms that C. albicans uses to survive in and infect the host can uncover candidate targets for novel antifungals. Protein kinases are central to a vast array of signalling pathways which govern practically all aspects of life, and furthermore are relatively straightforward to design drugs against. As such, investigation and characterization of protein kinases in C. albicans as well as their target proteins and the pathways they govern are important targets for research. AMP-activated kinases are well conserved proteins which respond to energy stress; they are represented in yeasts by the heterotrimeric SNF1 complex, which responds primarily to the absence of glucose. In this work, the SNF1 pathway was investigated with two primary goals: identify novel targets of this protein kinase and elucidate why SNF1 is essential. Two approaches were used to identify novel targets of SNF1. In one, suppressor mutants were evolved from a strain in which SNF1 activity is reduced, which exhibits defects in carbon source utilization and cell wall integrity. This revealed a suppressor mutation within SNF1 itself, coding for the catalytic subunit of the complex - SNF1Δ311-316. The second approach screened a library of artificially activated zinc cluster transcription factors, identifying Czf1 as one such transcription factor which, upon artificial activation, restored resistance to cell wall stress in a mutant of the SNF1 pathway. Finally, a, inducible gene deletion system revealed that SNF1 is not an essential gene.}, subject = {candida albicans}, language = {en} } @article{GehrmannHertleinHopkeetal.2021, author = {Gehrmann, Robin and Hertlein, Tobias and Hopke, Elisa and Ohlsen, Knut and Lalk, Michael and Hilgeroth, Andreas}, title = {Novel small-molecule hybrid-antibacterial agents against S. aureus and MRSA strains}, series = {Molecules}, volume = {27}, journal = {Molecules}, number = {1}, issn = {1420-3049}, doi = {10.3390/molecules27010061}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-252371}, year = {2021}, abstract = {Ongoing resistance developments against antibiotics that also affect last-resort antibiotics require novel antibacterial compounds. Strategies to discover such novel structures have been dimerization or hybridization of known antibacterial agents. We found novel antibacterial agents by dimerization of indols and hybridization with carbazoles. They were obtained in a simple one-pot reaction as bisindole tetrahydrocarbazoles. Further oxidation led to bisindole carbazoles with varied substitutions of both the indole and the carbazole scaffold. Both the tetrahydrocarbazoles and the carbazoles have been evaluated in various S. aureus strains, including MRSA strains. Those 5-cyano substituted derivatives showed best activities as determined by MIC values. The tetrahydrocarbazoles partly exceed the activity of the carbazole compounds and thus the activity of the used standard antibiotics. Thus, promising lead compounds could be identified for further studies.}, language = {en} } @phdthesis{Venturini2021, author = {Venturini, Elisa}, title = {Small proteins in \(Salmonella\): an updated annotation and a global analysis to find new regulators of virulence}, doi = {10.25972/OPUS-24702}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-247029}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Small proteins, often defined as shorter than 50 amino acids, have been implicated in fundamental cellular processes. Despite this, they have been largely understudied throughout all domains of life, since their size often makes their identification and characterization challenging. This work addressed the knowledge gap surrounding small proteins with a focus on the model bacterial pathogen Salmonella Typhimurium. In a first step, new small proteins were identified with a combination of computational and experimental approaches. Infection-relevant datasets were then investigated with the updated Salmonella annotation to prioritize promising candidates involved in virulence. To implement the annotation of new small proteins, predictions from the algorithm sPepFinder were merged with those derived from Ribo-seq. These were added to the Salmonella annotation and used to (re)analyse different datasets. Information regarding expression during infection (dual RNA-seq) and requirement for virulence (TraDIS) was collected for each given coding sequence. In parallel, Grad-seq data were mined to identify small proteins engaged in intermolecular interactions. The combination of dual RNA-seq and TraDIS lead to the identification of small proteins with features of virulence factors, namely high intracellular induction and a virulence phenotype upon transposon insertion. As a proof of principle of the power of this approach in highlighting high confidence candidates, two small proteins were characterized in the context of Salmonella infection. MgrB, a known regulator of the PhoPQ two-component system, was shown to be essential for the infection of epithelial cells and macrophages, possibly via its stabilizing effect on flagella or by interacting with other sensor kinases of twocomponent systems. YjiS, so far uncharacterized in Salmonella, had an opposite role in infection, with its deletion rendering Salmonella hypervirulent. The mechanism underlying this, though still obscure, likely relies on the interaction with inner-membrane proteins. Overall, this work provides a global description of Salmonella small proteins in the context of infection with a combinatorial approach that expedites the identification of interesting candidates. Different high-throughput datasets available for a broad range of organisms can be analysed in a similar manner with a focus on small proteins. This will lead to the identification of key factors in the regulation of various processes, thus for example providing targets for the treatment of bacterial infections or, in the case of commensal bacteria, for the modulation of the microbiota composition.}, subject = {Salmonella Typhimurium}, language = {en} } @article{StelznerBoynyHertleinetal.2021, author = {Stelzner, Kathrin and Boyny, Aziza and Hertlein, Tobias and Sroka, Aneta and Moldovan, Adriana and Paprotka, Kerstin and Kessie, David and Mehling, Helene and Potempa, Jan and Ohlsen, Knut and Fraunholz, Martin J. and Rudel, Thomas}, title = {Intracellular Staphylococcus aureus employs the cysteine protease staphopain A to induce host cell death in epithelial cells}, series = {PLoS Pathogens}, volume = {17}, journal = {PLoS Pathogens}, number = {9}, doi = {10.1371/journal.ppat.1009874}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-263908}, year = {2021}, abstract = {Staphylococcus aureus is a major human pathogen, which can invade and survive in non-professional and professional phagocytes. Uptake by host cells is thought to contribute to pathogenicity and persistence of the bacterium. Upon internalization by epithelial cells, cytotoxic S. aureus strains can escape from the phagosome, replicate in the cytosol and induce host cell death. Here, we identified a staphylococcal cysteine protease to induce cell death after translocation of intracellular S. aureus into the host cell cytoplasm. We demonstrated that loss of staphopain A function leads to delayed onset of host cell death and prolonged intracellular replication of S. aureus in epithelial cells. Overexpression of staphopain A in a non-cytotoxic strain facilitated intracellular killing of the host cell even in the absence of detectable intracellular replication. Moreover, staphopain A contributed to efficient colonization of the lung in a mouse pneumonia model. In phagocytic cells, where intracellular S. aureus is exclusively localized in the phagosome, staphopain A did not contribute to cytotoxicity. Our study suggests that staphopain A is utilized by S. aureus to exit the epithelial host cell and thus contributes to tissue destruction and dissemination of infection. Author summary Staphylococcus aureus is an antibiotic-resistant pathogen that emerges in hospital and community settings and can cause a variety of diseases ranging from skin abscesses to lung inflammation and blood poisoning. The bacterium can asymptomatically colonize the upper respiratory tract and skin of humans and take advantage of opportune conditions, like immunodeficiency or breached barriers, to cause infection. Although S. aureus was not regarded as intracellular bacterium, it can be internalized by human cells and subsequently exit the host cells by induction of cell death, which is considered to cause tissue destruction and spread of infection. The bacterial virulence factors and underlying molecular mechanisms involved in the intracellular lifestyle of S. aureus remain largely unknown. We identified a bacterial cysteine protease to contribute to host cell death of epithelial cells mediated by intracellular S. aureus. Staphopain A induced killing of the host cell after translocation of the pathogen into the cell cytosol, while bacterial proliferation was not required. Further, the protease enhanced survival of the pathogen during lung infection. These findings reveal a novel, intracellular role for the bacterial protease staphopain A.}, language = {en} } @article{GerovaWickeChiharaetal.2021, author = {Gerova, Milan and Wicke, Laura and Chihara, Kotaro and Schneider, Cornelius and Lavigne, Rob and Vogel, J{\"o}rg}, title = {A grad-seq view of RNA and protein complexes in Pseudomonas aeruginosa under standard and bacteriophage predation conditions}, series = {mbio}, volume = {12}, journal = {mbio}, number = {1}, doi = {10.1128/mBio.03454-20}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259054}, pages = {e03454-20}, year = {2021}, abstract = {The Gram-negative rod-shaped bacterium Pseudomonas aeruginosa is not only a major cause of nosocomial infections but also serves as a model species of bacterial RNA biology. While its transcriptome architecture and posttranscriptional regulation through the RNA-binding proteins Hfq, RsmA, and RsmN have been studied in detail, global information about stable RNA-protein complexes in this human pathogen is currently lacking. Here, we implement gradient profiling by sequencing (Grad-seq) in exponentially growing P. aeruginosa cells to comprehensively predict RNA and protein complexes, based on glycerol gradient sedimentation profiles of >73\% of all transcripts and ∼40\% of all proteins. As to benchmarking, our global profiles readily reported complexes of stable RNAs of P. aeruginosa, including 6S RNA with RNA polymerase and associated product RNAs (pRNAs). We observe specific clusters of noncoding RNAs, which correlate with Hfq and RsmA/N, and provide a first hint that P. aeruginosa expresses a ProQ-like FinO domain-containing RNA-binding protein. To understand how biological stress may perturb cellular RNA/protein complexes, we performed Grad-seq after infection by the bacteriophage ΦKZ. This model phage, which has a well-defined transcription profile during host takeover, displayed efficient translational utilization of phage mRNAs and tRNAs, as evident from their increased cosedimentation with ribosomal subunits. Additionally, Grad-seq experimentally determines previously overlooked phage-encoded noncoding RNAs. Taken together, the Pseudomonas protein and RNA complex data provided here will pave the way to a better understanding of RNA-protein interactions during viral predation of the bacterial cell. IMPORTANCE Stable complexes by cellular proteins and RNA molecules lie at the heart of gene regulation and physiology in any bacterium of interest. It is therefore crucial to globally determine these complexes in order to identify and characterize new molecular players and regulation mechanisms. Pseudomonads harbor some of the largest genomes known in bacteria, encoding ∼5,500 different proteins. Here, we provide a first glimpse on which proteins and cellular transcripts form stable complexes in the human pathogen Pseudomonas aeruginosa. We additionally performed this analysis with bacteria subjected to the important and frequently encountered biological stress of a bacteriophage infection. We identified several molecules with established roles in a variety of cellular pathways, which were affected by the phage and can now be explored for their role during phage infection. Most importantly, we observed strong colocalization of phage transcripts and host ribosomes, indicating the existence of specialized translation mechanisms during phage infection. All data are publicly available in an interactive and easy to use browser.}, language = {en} } @article{UlbrichtNickelWeidenbachetal.2020, author = {Ulbricht, Andrea and Nickel, Lisa and Weidenbach, Katrin and Vargas Gebauer, Herman and Kießling, Claudia and F{\"o}rstner, Konrad U. and Schmitz, Ruth A.}, title = {The CARF protein MM_0565 affects transcription of the casposon-encoded cas1-solo gene in Methanosarcina mazei G{\"o}1}, series = {Biomolecules}, volume = {10}, journal = {Biomolecules}, number = {8}, issn = {2218-273X}, doi = {10.3390/biom10081161}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-211097}, year = {2020}, abstract = {Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR) loci are found in bacterial and archaeal genomes where they provide the molecular machinery for acquisition of immunity against foreign DNA. In addition to the cas genes fundamentally required for CRISPR activity, a second class of genes is associated with the CRISPR loci, of which many have no reported function in CRISPR-mediated immunity. Here, we characterize MM_0565 associated to the type I-B CRISPR-locus of Methanosarcina mazei G{\"o}1. We show that purified MM_0565 composed of a CRISPR-Cas Associated Rossmann Fold (CARF) and a winged helix-turn-helix domain forms a dimer in solution; in vivo, the dimeric MM_0565 is strongly stabilized under high salt stress. While direct effects on CRISPR-Cas transcription were not detected by genetic approaches, specific binding of MM_0565 to the leader region of both CRISPR-Cas systems was observed by microscale thermophoresis and electromobility shift assays. Moreover, overexpression of MM_0565 strongly induced transcription of the cas1-solo gene located in the recently reported casposon, the gene product of which shows high similarity to classical Cas1 proteins. Based on our findings, and taking the absence of the expressed CRISPR locus-encoded Cas1 protein into account, we hypothesize that MM_0565 might modulate the activity of the CRISPR systems on different levels.}, language = {en} } @article{MuehlbergUmstaetterDomhanetal.2020, author = {M{\"u}hlberg, Eric and Umst{\"a}tter, Florian and Domhan, Cornelius and Hertlein, Tobias and Ohlsen, Knut and Krause, Andreas and Kleist, Christian and Beijer, Barbro and Zimmermann, Stefan and Haberkorn, Uwe and Mier, Walter and Uhl, Philipp}, title = {Vancomycin-lipopeptide conjugates with high antimicrobial activity on vancomycin-resistant enterococci}, series = {Pharmaceuticals}, volume = {13}, journal = {Pharmaceuticals}, number = {6}, issn = {1424-8247}, doi = {10.3390/ph13060110}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-205879}, year = {2020}, abstract = {Multidrug-resistant bacteria represent one of the most important health care problems worldwide. While there are numerous drugs available for standard therapy, there are only a few compounds capable of serving as a last resort for severe infections. Therefore, approaches to control multidrug-resistant bacteria must be implemented. Here, a strategy of reactivating the established glycopeptide antibiotic vancomycin by structural modification with polycationic peptides and subsequent fatty acid conjugation to overcome the resistance of multidrug-resistant bacteria was followed. This study especially focuses on the structure-activity relationship, depending on the modification site and fatty acid chain length. The synthesized conjugates showed high antimicrobial potential on vancomycin-resistant enterococci. We were able to demonstrate that the antimicrobial activity of the vancomycin-lipopeptide conjugates depends on the chain length of the attached fatty acid. All conjugates showed good cytocompatibility in vitro and in vivo. Radiolabeling enabled the in vivo determination of pharmacokinetics in Wistar rats by molecular imaging and biodistribution studies. An improved biodistribution profile in comparison to unmodified vancomycin was observed. While vancomycin is rapidly excreted by the kidneys, the most potent conjugate shows a hepatobiliary excretion profile. In conclusion, these results demonstrate the potential of the structural modification of already established antibiotics to provide highly active compounds for tackling multidrug-resistant bacteria.}, language = {en} } @article{EskenGorisGadkarietal.2020, author = {Esken, Jens and Goris, Tobias and Gadkari, Jennifer and Bischler, Thorsten and F{\"o}rstner, Konrad U. and Sharma, Cynthia M. and Diekert, Gabriele and Schubert, Torsten}, title = {Tetrachloroethene respiration in Sulfurospirillum species is regulated by a two-component system as unraveled by comparative genomics, transcriptomics, and regulator binding studies}, series = {MicrobiologyOpen}, volume = {9}, journal = {MicrobiologyOpen}, number = {12}, doi = {10.1002/mbo3.1138}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-225754}, year = {2020}, abstract = {Energy conservation via organohalide respiration (OHR) in dehalogenating Sulfurospirillum species is an inducible process. However, the gene products involved in tetrachloroethene (PCE) sensing and signal transduction have not been unambiguously identified. Here, genome sequencing of Sulfurospirillum strains defective in PCE respiration and comparative genomics, which included the PCE-respiring representatives of the genus, uncovered the genetic inactivation of a two-component system (TCS) in the OHR gene region of the natural mutants. The assumption that the TCS gene products serve as a PCE sensor that initiates gene transcription was supported by the constitutive low-level expression of the TCS operon in fumarate-adapted cells of Sulfurospirillum multivorans. Via RNA sequencing, eight transcriptional units were identified in the OHR gene region, which includes the TCS operon, the PCE reductive dehalogenase operon, the gene cluster for norcobamide biosynthesis, and putative accessory genes with unknown functions. The OmpR-family response regulator (RR) encoded in the TCS operon was functionally characterized by promoter-binding assays. The RR bound a cis-regulatory element that contained a consensus sequence of a direct repeat (CTATW) separated by 17 bp. Its location either overlapping the -35 box or 50 bp further upstream indicated different regulatory mechanisms. Sequence variations in the regulator binding sites identified in the OHR gene region were in accordance with differences in the transcript levels of the respective gene clusters forming the PCE regulon. The results indicate the presence of a fine-tuned regulatory network controlling PCE metabolism in dehalogenating Sulfurospirillum species, a group of metabolically versatile organohalide-respiring bacteria.}, language = {en} } @article{MayrRamirezZavalaKruegeretal.2020, author = {Mayr, Eva-Maria and Ram{\´i}rez-Zavala, Bernardo and Kr{\"u}ger, Ines and Morschh{\"a}user, Joachim}, title = {A Zinc Cluster Transcription Factor Contributes to the Intrinsic Fluconazole Resistance of Candida auris}, series = {mSphere}, volume = {5}, journal = {mSphere}, number = {2}, doi = {10.1128/mSphere.00279-20}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-229937}, year = {2020}, abstract = {ABSTRACT The recently emerged pathogenic yeast Candida auris is a major concern for human health, because it is easily transmissible, difficult to eradicate from hospitals, and highly drug resistant. Most C. auris isolates are resistant to the widely used antifungal drug fluconazole due to mutations in the target enzyme Erg11 and high activity of efflux pumps, such as Cdr1. In the well-studied, distantly related yeast Candida albicans, overexpression of drug efflux pumps also is a major mechanism of acquired fluconazole resistance and caused by gain-of-function mutations in the zinc cluster transcription factors Mrr1 and Tac1. In this study, we investigated a possible involvement of related transcription factors in efflux pump expression and fluconazole resistance of C. auris. The C. auris genome contains three genes encoding Mrr1 homologs and two genes encoding Tac1 homologs, and we generated deletion mutants lacking these genes in two fluconazole-resistant strains from clade III and clade IV. Deletion of TAC1b decreased the resistance to fluconazole and voriconazole in both strain backgrounds, demonstrating that the encoded transcription factor contributes to azole resistance in C. auris strains from different clades. CDR1 expression was not or only minimally affected in the mutants, indicating that Tac1b can confer increased azole resistance by a CDR1-independent mechanism. IMPORTANCE Candida auris is a recently emerged pathogenic yeast that within a few years after its initial description has spread all over the globe. C. auris is a major concern for human health, because it can cause life-threatening systemic infections, is easily transmissible, and is difficult to eradicate from hospital environments. Furthermore, C. auris is highly drug resistant, especially against the widely used antifungal drug fluconazole. Mutations in the drug target and high activity of efflux pumps are associated with azole resistance, but it is not known how drug resistance genes are regulated in C. auris. We have investigated the potential role of several candidate transcriptional regulators in the intrinsic fluconazole resistance of C. auris and identified a transcription factor that contributes to the high resistance to fluconazole and voriconazole of two C. auris strains from different genetic clades, thereby providing insight into the molecular basis of drug resistance of this medically important yeast."}, language = {en} } @article{Vogel2020, author = {Vogel, J{\"o}rg}, title = {An RNA biology perspective on species-specific programmable RNA antibiotics}, series = {Molecular Microbiology}, volume = {113}, journal = {Molecular Microbiology}, number = {3}, doi = {10.1111/mmi.14476}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-214869}, pages = {550 -- 559}, year = {2020}, abstract = {Our body is colonized by a vast array of bacteria the sum of which forms our microbiota. The gut alone harbors >1,000 bacterial species. An understanding of their individual or synergistic contributions to human health and disease demands means to interfere with their functions on the species level. Most of the currently available antibiotics are broad-spectrum, thus too unspecific for a selective depletion of a single species of interest from the microbiota. Programmable RNA antibiotics in the form of short antisense oligonucleotides (ASOs) promise to achieve precision manipulation of bacterial communities. These ASOs are coupled to small peptides that carry them inside the bacteria to silence mRNAs of essential genes, for example, to target antibiotic-resistant pathogens as an alternative to standard antibiotics. There is already proof-of-principle with diverse bacteria, but many open questions remain with respect to true species specificity, potential off-targeting, choice of peptides for delivery, bacterial resistance mechanisms and the host response. While there is unlikely a one-fits-all solution for all microbiome species, I will discuss how recent progress in bacterial RNA biology may help to accelerate the development of programmable RNA antibiotics for microbiome editing and other applications.}, language = {en} } @article{BarthelsMarincolaMarciniaketal.2020, author = {Barthels, Fabian and Marincola, Gabriella and Marciniak, Tessa and Konh{\"a}user, Matthias and Hammerschmidt, Stefan and Bierlmeier, Jan and Distler, Ute and Wich, Peter R. and Tenzer, Stefan and Schwarzer, Dirk and Ziebuhr, Wilma and Schirmeister, Tanja}, title = {Asymmetric Disulfanylbenzamides as Irreversible and Selective Inhibitors of Staphylococcus aureus Sortase A}, series = {ChemMedChem}, volume = {15}, journal = {ChemMedChem}, number = {10}, doi = {10.1002/cmdc.201900687}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-214581}, pages = {839 -- 850}, year = {2020}, abstract = {Staphylococcus aureus is one of the most frequent causes of nosocomial and community-acquired infections, with drug-resistant strains being responsible for tens of thousands of deaths per year. S. aureus sortase A inhibitors are designed to interfere with virulence determinants. We have identified disulfanylbenzamides as a new class of potent inhibitors against sortase A that act by covalent modification of the active-site cysteine. A broad series of derivatives were synthesized to derive structure-activity relationships (SAR). In vitro and in silico methods allowed the experimentally observed binding affinities and selectivities to be rationalized. The most active compounds were found to have single-digit micromolar Ki values and caused up to a 66 \% reduction of S. aureus fibrinogen attachment at an effective inhibitor concentration of 10 μM. This new molecule class exhibited minimal cytotoxicity, low bacterial growth inhibition and impaired sortase-mediated adherence of S. aureus cells.}, language = {en} } @article{MottolaSchwanfelderMorschhaeuser2020, author = {Mottola, Austin and Schwanfelder, Sonja and Morschh{\"a}user, Joachim}, title = {Generation of Viable Candida albicans Mutants Lacking the "Essential" Protein Kinase Snf1 by Inducible Gene Deletion}, series = {mSphere}, volume = {5}, journal = {mSphere}, number = {4}, doi = {10.1128/mSphere.00805-20}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-230524}, year = {2020}, abstract = {The protein kinase Snf1, a member of the highly conserved AMP-activated protein kinase family, is a central regulator of metabolic adaptation. In the pathogenic yeast Candida albicans, Snf1 is considered to be essential, as previous attempts by different research groups to generate homozygous snf1 Delta mutants were unsuccessful. We aimed to elucidate why Snf1 is required for viability in C. albicans by generating snf1 Delta null mutants through forced, inducible gene deletion and observing the terminal phenotype before cell death. Unexpectedly, we found that snf1 Delta mutants were viable and could grow, albeit very slowly, on rich media containing the preferred carbon source glucose. Growth was improved when the cells were incubated at 37 degrees C instead of 30 degrees C, and this phenotype enabled us to isolate homozygous snf1 Delta mutants also by conventional, sequential deletion of both SNF1 alleles in a wild-type C. albicans strain. All snf1 Delta mutants could grow slowly on glucose but were unable to utilize alternative carbon sources. Our results show that, under optimal conditions, C. albicans can live and grow without Snf1. Furthermore, they demonstrate that inducible gene deletion is a powerful method for assessing gene essentiality in C. albicans. IMPORTANCE Essential genes are those that are indispensable for the viability and growth of an organism. Previous studies indicated that the protein kinase Snf1, a central regulator of metabolic adaptation, is essential in the pathogenic yeast Candida albicans, because no homozygous snf1 deletion mutants of C. albicans wild-type strains could be obtained by standard approaches. In order to investigate the lethal consequences of SNF1 deletion, we generated conditional mutants in which SNF1 could be deleted by forced, inducible excision from the genome. Unexpectedly, we found that snf1 null mutants were viable and could grow slowly under optimal conditions. The growth phenotypes of the snf1 Delta mutants explain why such mutants were not recovered in previous attempts. Our study demonstrates that inducible gene deletion is a powerful method for assessing gene essentiality in C. albicans.}, language = {en} } @article{UmstaetterDomhanHertleinetal.2020, author = {Umst{\"a}tter, Florian and Domhan, Cornelius and Hertlein, Tobias and Ohlsen, Knut and M{\"u}hlberg, Eric and Kleist, Christian and Zimmermann, Stefan and Beijer, Barbro and Klika, Karel D. and Haberkorn, Uwe and Mier, Walter and Uhl, Philipp}, title = {Vancomycin Resistance Is Overcome by Conjugation of Polycationic Peptides}, series = {Angewandte Chemie International Edition}, volume = {59}, journal = {Angewandte Chemie International Edition}, number = {23}, doi = {10.1002/anie.202002727}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-215550}, pages = {8823 -- 8827}, year = {2020}, abstract = {Multidrug-resistant bacteria represent one of the biggest challenges facing modern medicine. The increasing prevalence of glycopeptide resistance compromises the efficacy of vancomycin, for a long time considered as the last resort for the treatment of resistant bacteria. To reestablish its activity, polycationic peptides were conjugated to vancomycin. By site-specific conjugation, derivatives that bear the peptide moiety at four different sites of the antibiotic were synthesized. The most potent compounds exhibited an approximately 1000-fold increased antimicrobial activity and were able to overcome the most important types of vancomycin resistance. Additional blocking experiments using d-Ala-d-Ala revealed a mode of action beyond inhibition of cell-wall formation. The antimicrobial potential of the lead candidate FU002 for bacterial infection treatments could be demonstrated in an in vivo study. Molecular imaging and biodistribution studies revealed that conjugation engenders superior pharmacokinetics.}, language = {en} } @article{AlzheimerSvenssonKoenigetal.2020, author = {Alzheimer, Mona and Svensson, Sarah L. and K{\"o}nig, Fabian and Schweinlin, Matthias and Metzger, Marco and Walles, Heike and Sharma, Cynthia M.}, title = {A three-dimensional intestinal tissue model reveals factors and small regulatory RNAs important for colonization with Campylobacter jejuni}, series = {PLoS Pathogens}, volume = {16}, journal = {PLoS Pathogens}, number = {2}, doi = {10.1371/journal.ppat.1008304}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-229454}, year = {2020}, abstract = {The Gram-negative Epsilonproteobacterium Campylobacter jejuni is currently the most prevalent bacterial foodborne pathogen. Like for many other human pathogens, infection studies with C. jejuni mainly employ artificial animal or cell culture models that can be limited in their ability to reflect the in-vivo environment within the human host. Here, we report the development and application of a human three-dimensional (3D) infection model based on tissue engineering to study host-pathogen interactions. Our intestinal 3D tissue model is built on a decellularized extracellular matrix scaffold, which is reseeded with human Caco-2 cells. Dynamic culture conditions enable the formation of a polarized mucosal epithelial barrier reminiscent of the 3D microarchitecture of the human small intestine. Infection with C. jejuni demonstrates that the 3D tissue model can reveal isolate-dependent colonization and barrier disruption phenotypes accompanied by perturbed localization of cell-cell junctions. Pathogenesis-related phenotypes of C. jejuni mutant strains in the 3D model deviated from those obtained with 2D-monolayers, but recapitulated phenotypes previously observed in animal models. Moreover, we demonstrate the involvement of a small regulatory RNA pair, CJnc180/190, during infections and observe different phenotypes of CJnc180/190 mutant strains in 2D vs. 3D infection models. Hereby, the CJnc190 sRNA exerts its pathogenic influence, at least in part, via repression of PtmG, which is involved in flagellin modification. Our results suggest that the Caco-2 cell-based 3D tissue model is a valuable and biologically relevant tool between in-vitro and in-vivo infection models to study virulence of C. jejuni and other gastrointestinal pathogens.}, language = {en} } @article{MichauxHansenJennichesetal.2020, author = {Michaux, Charlotte and Hansen, Elisabeth E. and Jenniches, Laura and Gerovac, Milan and Barquist, Lars and Vogel, J{\"o}rg}, title = {Single-Nucleotide RNA Maps for the Two Major Nosocomial Pathogens Enterococcus faecalis and Enterococcus faecium}, series = {Frontiers in Cellular and Infection Microbiology}, volume = {10}, journal = {Frontiers in Cellular and Infection Microbiology}, issn = {2235-2988}, doi = {10.3389/fcimb.2020.600325}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-217947}, year = {2020}, abstract = {Enterococcus faecalis and faecium are two major representative clinical strains of the Enterococcus genus and are sadly notorious to be part of the top agents responsible for nosocomial infections. Despite their critical implication in worldwide public healthcare, essential and available resources such as deep transcriptome annotations remain poor, which also limits our understanding of post-transcriptional control small regulatory RNA (sRNA) functions in these bacteria. Here, using the dRNA-seq technique in combination with ANNOgesic analysis, we successfully mapped and annotated transcription start sites (TSS) of both E. faecalis V583 and E. faecium AUS0004 at single nucleotide resolution. Analyzing bacteria in late exponential phase, we capture ~40\% (E. faecalis) and 43\% (E. faecium) of the annotated protein-coding genes, determine 5′ and 3′ UTR (untranslated region) length, and detect instances of leaderless mRNAs. The transcriptome maps revealed sRNA candidates in both bacteria, some found in previous studies and new ones. Expression of candidate sRNAs is being confirmed under biologically relevant environmental conditions. This comprehensive global TSS mapping atlas provides a valuable resource for RNA biology and gene expression analysis in the Enterococci. It can be accessed online at www.helmholtz-hiri.de/en/datasets/enterococcus through an instance of the genomic viewer JBrowse.}, language = {en} } @article{HennessenMiethkeZaburannyietal.2020, author = {Hennessen, Fabienne and Miethke, Marcus and Zaburannyi, Nestor and Loose, Maria and Lukežič, Tadeja and Bernecker, Steffen and H{\"u}ttel, Stephan and Jansen, Rolf and Schmiedel, Judith and Fritzenwanker, Moritz and Imirzalioglu, Can and Vogel, J{\"o}rg and Westermann, Alexander J. and Hesterkamp, Thomas and Stadler, Marc and Wagenlehner, Florian and Petković, Hrvoje and Herrmann, Jennifer and M{\"u}ller, Rolf}, title = {Amidochelocardin overcomes resistance mechanisms exerted on tetracyclines and natural chelocardin}, series = {Antibiotics}, volume = {9}, journal = {Antibiotics}, number = {9}, issn = {2079-6382}, doi = {10.3390/antibiotics9090619}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-213149}, year = {2020}, abstract = {The reassessment of known but neglected natural compounds is a vital strategy for providing novel lead structures urgently needed to overcome antimicrobial resistance. Scaffolds with resistance-breaking properties represent the most promising candidates for a successful translation into future therapeutics. Our study focuses on chelocardin, a member of the atypical tetracyclines, and its bioengineered derivative amidochelocardin, both showing broad-spectrum antibacterial activity within the ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) panel. Further lead development of chelocardins requires extensive biological and chemical profiling to achieve favorable pharmaceutical properties and efficacy. This study shows that both molecules possess resistance-breaking properties enabling the escape from most common tetracycline resistance mechanisms. Further, we show that these compounds are potent candidates for treatment of urinary tract infections due to their in vitro activity against a large panel of multidrug-resistant uropathogenic clinical isolates. In addition, the mechanism of resistance to natural chelocardin was identified as relying on efflux processes, both in the chelocardin producer Amycolatopsis sulphurea and in the pathogen Klebsiella pneumoniae. Resistance development in Klebsiella led primarily to mutations in ramR, causing increased expression of the acrAB-tolC efflux pump. Most importantly, amidochelocardin overcomes this resistance mechanism, revealing not only the improved activity profile but also superior resistance-breaking properties of this novel antibacterial compound.}, language = {en} } @article{SchulteSchweinlinWestermannetal.2020, author = {Schulte, Leon N. and Schweinlin, Matthias and Westermann, Alexander J. and Janga, Harshavardhan and Santos, Sara C. and Appenzeller, Silke and Walles, Heike and Vogel, J{\"o}rg and Metzger, Marco}, title = {An Advanced Human Intestinal Coculture Model Reveals Compartmentalized Host and Pathogen Strategies during Salmonella Infection}, series = {mBio}, volume = {11, 2020}, journal = {mBio}, number = {1}, doi = {10.1128/mBio.03348-19}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-229428}, year = {2020}, abstract = {A major obstacle in infection biology is the limited ability to recapitulate human disease trajectories in traditional cell culture and animal models, which impedes the translation of basic research into clinics. Here, we introduce a three-dimensional (3D) intestinal tissue model to study human enteric infections at a level of detail that is not achieved by conventional two-dimensional monocultures. Our model comprises epithelial and endothelial layers, a primary intestinal collagen scaffold, and immune cells. Upon Salmonella infection, the model mimics human gastroenteritis, in that it restricts the pathogen to the epithelial compartment, an advantage over existing mouse models. Application of dual transcriptome sequencing to the Salmonella-infected model revealed the communication of epithelial, endothelial, monocytic, and natural killer cells among each other and with the pathogen. Our results suggest that Salmonella uses its type III secretion systems to manipulate STAT3-dependent inflammatory responses locally in the epithelium without accompanying alterations in the endothelial compartment. Our approach promises to reveal further human-specific infection strategies employed by Salmonella and other pathogens. IMPORTANCE Infection research routinely employs in vitro cell cultures or in vivo mouse models as surrogates of human hosts. Differences between murine and human immunity and the low level of complexity of traditional cell cultures, however, highlight the demand for alternative models that combine the in vivo-like properties of the human system with straightforward experimental perturbation. Here, we introduce a 3D tissue model comprising multiple cell types of the human intestinal barrier, a primary site of pathogen attack. During infection with the foodborne pathogen Salmonella enterica serovar Typhimurium, our model recapitulates human disease aspects, including pathogen restriction to the epithelial compartment, thereby deviating from the systemic infection in mice. Combination of our model with state-of-the-art genetics revealed Salmonella-mediated local manipulations of human immune responses, likely contributing to the establishment of the pathogen's infection niche. We propose the adoption of similar 3D tissue models to infection biology, to advance our understanding of molecular infection strategies employed by bacterial pathogens in their human host.}, language = {en} } @article{BauriedlGerovacHeidrichetal.2020, author = {Bauriedl, Saskia and Gerovac, Milan and Heidrich, Nadja and Bischler, Thorsten and Barquist, Lars and Vogel, J{\"o}rg and Schoen, Christoph}, title = {The minimal meningococcal ProQ protein has an intrinsic capacity for structure-based global RNA recognition}, series = {Nature Communications}, volume = {11}, journal = {Nature Communications}, doi = {10.1038/s41467-020-16650-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-230040}, year = {2020}, abstract = {FinO-domain proteins are a widespread family of bacterial RNA-binding proteins with regulatory functions. Their target spectrum ranges from a single RNA pair, in the case of plasmid-encoded FinO, to global RNA regulons, as with enterobacterial ProQ. To assess whether the FinO domain itself is intrinsically selective or promiscuous, we determine in vivo targets of Neisseria meningitidis, which consists of solely a FinO domain. UV-CLIP-seq identifies associations with 16 small non-coding sRNAs and 166 mRNAs. Meningococcal ProQ predominantly binds to highly structured regions and generally acts to stabilize its RNA targets. Loss of ProQ alters transcript levels of >250 genes, demonstrating that this minimal ProQ protein impacts gene expression globally. Phenotypic analyses indicate that ProQ promotes oxidative stress resistance and DNA damage repair. We conclude that FinO domain proteins recognize some abundant type of RNA shape and evolve RNA binding selectivity through acquisition of additional regions that constrain target recognition. FinO-domain proteins are bacterial RNA-binding proteins with a wide range of target specificities. Here, the authors employ UV CLIP-seq and show that minimal ProQ protein of Neisseria meningitidis binds to various small non-coding RNAs and mRNAs involved in virulence.}, language = {en} } @phdthesis{Hoer2020, author = {H{\"o}r, Jens}, title = {Discovery of RNA/protein complexes by Grad-seq}, doi = {10.25972/OPUS-21181}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-211811}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Complex formation between macromolecules constitutes the foundation of most cellular processes. Most known complexes are made up of two or more proteins interacting in order to build a functional entity and therefore enabling activities which the single proteins could otherwise not fulfill. With the increasing knowledge about noncoding RNAs (ncRNAs) it has become evident that, similar to proteins, many of them also need to form a complex to be functional. This functionalization is usually executed by specific or global RNA-binding proteins (RBPs) that are specialized binders of a certain class of ncRNAs. For instance, the enterobacterial global RBPs Hfq and ProQ together bind >80 \% of the known small regulatory RNAs (sRNAs), a class of ncRNAs involved in post-transcriptional regulation of gene expression. However, identification of RNA-protein interactions so far was performed individually by employing low-throughput biochemical methods and thereby hindered the discovery of such interactions, especially in less studied organisms such as Gram-positive bacteria. Using gradient profiling by sequencing (Grad-seq), the present thesis aimed to establish high-throughput, global RNA/protein complexome resources for Escherichia coli and Streptococcus pneumoniae in order to provide a new way to investigate RNA-protein as well as protein-protein interactions in these two important model organisms. In E. coli, Grad-seq revealed the sedimentation profiles of 4,095 (∼85 \% of total) transcripts and 2,145 (∼49 \% of total) proteins and with that reproduced its major ribonucleoprotein particles. Detailed analysis of the in-gradient distribution of the RNA and protein content uncovered two functionally unknown molecules—the ncRNA RyeG and the small protein YggL—to be ribosomeassociated. Characterization of RyeG revealed it to encode for a 48 aa long, toxic protein that drastically increases lag times when overexpressed. YggL was shown to be bound by the 50S subunit of the 70S ribosome, possibly indicating involvement of YggL in ribosome biogenesis or translation of specific mRNAs. S. pneumoniae Grad-seq detected 2,240 (∼88 \% of total) transcripts and 1,301 (∼62 \% of total) proteins, whose gradient migration patterns were successfully reconstructed, and thereby represents the first RNA/protein complexome resource of a Gram-positive organism. The dataset readily verified many conserved major complexes for the first time in S. pneumoniae and led to the discovery of a specific interaction between the 3'!5' exonuclease Cbf1 and the competence-regulating ciadependent sRNAs (csRNAs). Unexpectedly, trimming of the csRNAs by Cbf1 stabilized the former, thereby promoting their inhibitory function. cbf1 was further shown to be part of the late competence genes and as such to act as a negative regulator of competence.}, subject = {Multiproteinkomplex}, language = {en} } @article{MietrachSchlosserGeibel2019, author = {Mietrach, Nicole and Schlosser, Andreas and Geibel, Sebastian}, title = {An extracellular domain of the EsaA membrane component of the type VIIb secretion system: expression, purification and crystallization}, series = {Acta Crystallographica Section F}, volume = {75}, journal = {Acta Crystallographica Section F}, number = {12}, doi = {10.1107/S2053230X1901495X}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-213681}, pages = {725-730}, year = {2019}, abstract = {The membrane protein EsaA is a conserved component of the type VIIb secretion system. Limited proteolysis of purified EsaA from Staphylococcus aureus USA300 identified a stable 48 kDa fragment, which was mapped by fingerprint mass spectrometry to an uncharacterized extracellular segment of EsaA. Analysis by circular dichroism spectroscopy showed that this fragment folds into a single stable domain made of mostly α-helices with a melting point of 34.5°C. Size-exclusion chromatography combined with multi-angle light scattering indicated the formation of a dimer of the purified extracellular domain. Octahedral crystals were grown in 0.2 M ammonium citrate tribasic pH 7.0, 16\% PEG 3350 using the hanging-drop vapor-diffusion method. Diffraction data were analyzed to 4.0 {\AA} resolution, showing that the crystals belonged to the enantiomorphic tetragonal space groups P41212 or P43212, with unit-cell parameters a = 197.5, b = 197.5, c = 368.3 {\AA}, α = β = γ = 90°.}, language = {en} } @article{MottolaMorschhaeuser2019, author = {Mottola, Austin and Morschh{\"a}user, Joachim}, title = {An intragenic recombination event generates a Snf4-independent form of the essential protein kinase SNF1 in Candida albicans}, series = {mSphere}, volume = {4}, journal = {mSphere}, number = {3}, doi = {10.1128/mSphere.00352-19}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-202170}, pages = {e00352-19}, year = {2019}, abstract = {The heterotrimeric protein kinase SNF1 plays a key role in the metabolic adaptation of the pathogenic yeast Candida albicans. It consists of the essential catalytic α-subunit Snf1, the γ-subunit Snf4, and one of the two β-subunits Kis1 and Kis2. Snf4 is required to release the N-terminal catalytic domain of Snf1 from autoinhibition by the C-terminal regulatory domain, and snf4Δ mutants cannot grow on carbon sources other than glucose. In a screen for suppressor mutations that restore growth of a snf4Δ mutant on alternative carbon sources, we isolated a mutant in which six amino acids between the N-terminal kinase domain and the C-terminal regulatory domain of Snf1 were deleted. The deletion was caused by an intragenic recombination event between two 8-bp direct repeats flanking six intervening codons. In contrast to truncated forms of Snf1 that contain only the kinase domain, the Snf4-independent Snf1\(^{Δ311 - 316}\) was fully functional and could replace wild-type Snf1 for normal growth, because it retained the ability to interact with the Kis1 and Kis2 β-subunits via its C-terminal domain. Indeed, the Snf4-independent Snf1\(^{Δ311 - 316}\) still required the β-subunits of the SNF1 complex to perform its functions and did not rescue the growth defects of kis1Δ mutants. Our results demonstrate that a preprogrammed in-frame deletion event within the SNF1 coding region can generate a mutated form of this essential kinase which abolishes autoinhibition and thereby overcomes growth deficiencies caused by a defect in the γ-subunit Snf4.}, language = {en} } @article{WeidnerLardenoijeEijssenetal.2019, author = {Weidner, Magdalena T. and Lardenoije, Roy and Eijssen, Lars and Mogavero, Floriana and De Groodt, Lilian P. M. T. and Popp, Sandy and Palme, Rupert and F{\"o}rstner, Konrad U. and Strekalova, Tatyana and Steinbusch, Harry W. M. and Schmitt-B{\"o}hrer, Angelika G. and Glennon, Jeffrey C. and Waider, Jonas and van den Hove, Daniel L. A. and Lesch, Klaus-Peter}, title = {Identification of cholecystokinin by genome-wide profiling as potential mediator of serotonin-dependent behavioral effects of maternal separation in the amygdala}, series = {Frontiers in Neuroscience}, volume = {13}, journal = {Frontiers in Neuroscience}, doi = {10.3389/fnins.2019.00460}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201340}, pages = {460}, year = {2019}, abstract = {Converging evidence suggests a role of serotonin (5-hydroxytryptamine, 5-HT) and tryptophan hydroxylase 2 (TPH2), the rate-limiting enzyme of 5-HT synthesis in the brain, in modulating long-term, neurobiological effects of early-life adversity. Here, we aimed at further elucidating the molecular mechanisms underlying this interaction, and its consequences for socio-emotional behaviors, with a focus on anxiety and social interaction. In this study, adult, male Tph2 null mutant (Tph2\(^{-/-}\)) and heterozygous (Tph2\(^{+/-}\)) mice, and their wildtype littermates (Tph2\(^{+/+}\)) were exposed to neonatal, maternal separation (MS) and screened for behavioral changes, followed by genome-wide RNA expression and DNA methylation profiling. In Tph2\(^{-/-}\) mice, brain 5-HT deficiency profoundly affected socio-emotional behaviors, i.e., decreased avoidance of the aversive open arms in the elevated plus-maze (EPM) as well as decreased prosocial and increased rule breaking behavior in the resident-intruder test when compared to their wildtype littermates. Tph2\(^{+/-}\) mice showed an ambiguous profile with context-dependent, behavioral responses. In the EPM they showed similar avoidance of the open arm but decreased prosocial and increased rule breaking behavior in the resident-intruder test when compared to their wildtype littermates. Notably, MS effects on behavior were subtle and depended on the Tph2 genotype, in particular increasing the observed avoidance of EPM open arms in wildtype and Tph2\(^{+/-}\) mice when compared to their Tph2\(^{-/-}\) littermates. On the genomic level, the interaction of Tph2 genotype with MS differentially affected the expression of numerous genes, of which a subset showed an overlap with DNA methylation profiles at corresponding loci. Remarkably, changes in methylation nearby and expression of the gene encoding cholecystokinin, which were inversely correlated to each other, were associated with variations in anxiety-related phenotypes. In conclusion, next to various behavioral alterations, we identified gene expression and DNA methylation profiles to be associated with TPH2 inactivation and its interaction with MS, suggesting a gene-by-environment interaction-dependent, modulatory function of brain 5-HT availability.}, language = {en} } @article{PoppRamirezZavalaSchwanfelderetal.2019, author = {Popp, Christina and Ram{\´i}rez-Zavala, Bernardo and Schwanfelder, Sonja and Kr{\"u}ger, Ines and Morschh{\"a}user, Joachim}, title = {Evolution of fluconazole-resistant Candida albicans strains by drug-induced mating competence and parasexual recombination}, series = {mBio}, volume = {10}, journal = {mBio}, number = {1}, doi = {10.1128/mBio.02740-18}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-200901}, pages = {e02740-18}, year = {2019}, abstract = {The clonal population structure of Candida albicans suggests that (para)sexual recombination does not play an important role in the lifestyle of this opportunistic fungal pathogen, an assumption that is strengthened by the fact that most C. albicans strains are heterozygous at the mating type locus (MTL) and therefore mating-incompetent. On the other hand, mating might occur within clonal populations and allow the combination of advantageous traits that were acquired by individual cells to adapt to adverse conditions. We have investigated if parasexual recombination may be involved in the evolution of highly drug-resistant strains exhibiting multiple resistance mechanisms against fluconazole, an antifungal drug that is commonly used to treat infections by C. albicans. Growth of strains that were heterozygous for MTL and different fluconazole resistance mutations in the presence of the drug resulted in the emergence of derivatives that had become homozygous for the mutated allele and the mating type locus and exhibited increased drug resistance. When MTLa/a and MTLα/α cells of these strains were mixed in all possible combinations, we could isolate mating products containing the genetic material from both parents. The initial mating products did not exhibit higher drug resistance than their parental strains, but further propagation under selective pressure resulted in the loss of the wild-type alleles and increased fluconazole resistance. Therefore, fluconazole treatment not only selects for resistance mutations but also promotes genomic alterations that confer mating competence, which allows cells in an originally clonal population to exchange individually acquired resistance mechanisms and generate highly drug-resistant progeny.}, language = {en} } @article{WestermannVenturiniSellinetal.2019, author = {Westermann, Alexander J. and Venturini, Elisa and Sellin, Mikael E. and F{\"o}rstner, Konrad U. and Hardt, Wolf-Dietrich and Vogel, J{\"o}rg}, title = {The major RNA-binding protein ProQ impacts virulence gene expression in Salmonella enterica serovar Typhimurium}, series = {mBio}, volume = {10}, journal = {mBio}, number = {1}, doi = {10.1128/mBio.02504-18}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-177722}, pages = {e02504-18}, year = {2019}, abstract = {FinO domain proteins such as ProQ of the model pathogen Salmonella enterica have emerged as a new class of major RNA-binding proteins in bacteria. ProQ has been shown to target hundreds of transcripts, including mRNAs from many virulence regions, but its role, if any, in bacterial pathogenesis has not been studied. Here, using a Dual RNA-seq approach to profile ProQ-dependent gene expression changes as Salmonella infects human cells, we reveal dysregulation of bacterial motility, chemotaxis, and virulence genes which is accompanied by altered MAPK (mitogen-activated protein kinase) signaling in the host. Comparison with the other major RNA chaperone in Salmonella, Hfq, reinforces the notion that these two global RNA-binding proteins work in parallel to ensure full virulence. Of newly discovered infection-associated ProQ-bound small noncoding RNAs (sRNAs), we show that the 3′UTR-derived sRNA STnc540 is capable of repressing an infection-induced magnesium transporter mRNA in a ProQ-dependent manner. Together, this comprehensive study uncovers the relevance of ProQ for Salmonella pathogenesis and highlights the importance of RNA-binding proteins in regulating bacterial virulence programs. IMPORTANCE The protein ProQ has recently been discovered as the centerpiece of a previously overlooked "third domain" of small RNA-mediated control of gene expression in bacteria. As in vitro work continues to reveal molecular mechanisms, it is also important to understand how ProQ affects the life cycle of bacterial pathogens as these pathogens infect eukaryotic cells. Here, we have determined how ProQ shapes Salmonella virulence and how the activities of this RNA-binding protein compare with those of Hfq, another central protein in RNA-based gene regulation in this and other bacteria. To this end, we apply global transcriptomics of pathogen and host cells during infection. In doing so, we reveal ProQ-dependent transcript changes in key virulence and host immune pathways. Moreover, we differentiate the roles of ProQ from those of Hfq during infection, for both coding and noncoding transcripts, and provide an important resource for those interested in ProQ-dependent small RNAs in enteric bacteria.}, language = {en} } @article{FanEbnerReichertetal.2019, author = {Fan, Sook-Ha and Ebner, Patrick and Reichert, Sebstian and Hertlein, Tobias and Zabel, Susanne and Lankapalli, Aditya Kumar and Nieselt, Kay and Ohlsen, Knut and G{\"o}tz, Friedrich}, title = {MpsAB is important for Staphylococcus aureus virulence and growth at atmospheric CO2 levels}, series = {Nature Communications}, volume = {10}, journal = {Nature Communications}, doi = {10.1038/s41467-019-11547-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-227624}, year = {2019}, abstract = {The mechanisms behind carbon dioxide (CO2) dependency in non-autotrophic bacterial isolates are unclear. Here we show that the Staphylococcus aureus mpsAB operon, known to play a role in membrane potential generation, is crucial for growth at atmospheric CO2 levels. The genes mpsAB can complement an Escherichia coli carbonic anhydrase (CA) mutant, and CA from E. coli can complement the S. aureus delta-mpsABC mutant. In comparison with the wild type, S. aureus mps mutants produce less hemolytic toxin and are less virulent in animal models of infection. Homologs of mpsA and mpsB are widespread among bacteria and are often found adjacent to each other on the genome. We propose that MpsAB represents a dissolved inorganic carbon transporter, or bicarbonate concentrating system, possibly acting as a sodium bicarbonate cotransporter.}, language = {en} } @article{SeethalerHertleinWeckleinetal.2019, author = {Seethaler, Marius and Hertlein, Tobias and Wecklein, Bj{\"o}rn and Ymeraj, Alba and Ohlsen, Knut and Lalk, Michael and Hilgeroth, Andreas}, title = {Novel small-molecule antibacterials against Gram-positive pathogens of Staphylococcus and Enterococcus species}, series = {Antibiotics}, volume = {8}, journal = {Antibiotics}, number = {4}, issn = {2079-6382}, doi = {10.3390/antibiotics8040210}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-193130}, year = {2019}, abstract = {Defeat of the antibiotic resistance of pathogenic bacteria is one great challenge today and for the future. In the last century many classes of effective antibacterials have been developed, so that upcoming resistances could be met with novel drugs of various compound classes. Meanwhile, there is a certain lack of research of the pharmaceutical companies, and thus there are missing developments of novel antibiotics. Gram-positive bacteria are the most important cause of clinical infections. The number of novel antibacterials in clinical trials is strongly restricted. There is an urgent need to find novel antibacterials. We used synthetic chemistry to build completely novel hybrid molecules of substituted indoles and benzothiophene. In a simple one-pot reaction, two novel types of thienocarbazoles were yielded. Both indole substituted compound classes have been evaluated as completely novel antibacterials against the Staphylococcus and Enterococcus species. The evaluated partly promising activities depend on the indole substituent type. First lead compounds have been evaluated within in vivo studies. They confirmed the in vitro results for the new classes of small-molecule antibacterials.}, language = {en} } @article{GomesWestermannSauerweinetal.2019, author = {Gomes, Sara F. Martins and Westermann, Alexander J. and Sauerwein, Till and Hertlein, Tobias and F{\"o}rstner, Konrad U. and Ohlsen, Knut and Metzger, Marco and Shusta, Eric V. and Kim, Brandon J. and Appelt-Menzel, Antje and Schubert-Unkmeir, Alexandra}, title = {Induced pluripotent stem cell-derived brain endothelial cells as a cellular model to study Neisseria meningitidis infection}, series = {Frontiers in Microbiology}, volume = {10}, journal = {Frontiers in Microbiology}, number = {1181}, doi = {10.3389/fmicb.2019.01181}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201562}, year = {2019}, abstract = {Meningococcal meningitis is a severe central nervous system infection that occurs when Neisseria meningitidis (Nm) penetrates brain endothelial cells (BECs) of the meningeal blood-cerebrospinal fluid barrier. As a human-specific pathogen, in vivo models are greatly limited and pose a significant challenge. In vitro cell models have been developed, however, most lack critical BEC phenotypes limiting their usefulness. Human BECs generated from induced pluripotent stem cells (iPSCs) retain BEC properties and offer the prospect of modeling the human-specific Nm interaction with BECs. Here, we exploit iPSC-BECs as a novel cellular model to study Nm host-pathogen interactions, and provide an overview of host responses to Nm infection. Using iPSC-BECs, we first confirmed that multiple Nm strains and mutants follow similar phenotypes to previously described models. The recruitment of the recently published pilus adhesin receptor CD147 underneath meningococcal microcolonies could be verified in iPSC-BECs. Nm was also observed to significantly increase the expression of pro-inflammatory and neutrophil-specific chemokines IL6, CXCL1, CXCL2, CXCL8, and CCL20, and the secretion of IFN-γ and RANTES. For the first time, we directly observe that Nm disrupts the three tight junction proteins ZO-1, Occludin, and Claudin-5, which become frayed and/or discontinuous in BECs upon Nm challenge. In accordance with tight junction loss, a sharp loss in trans-endothelial electrical resistance, and an increase in sodium fluorescein permeability and in bacterial transmigration, was observed. Finally, we established RNA-Seq of sorted, infected iPSC-BECs, providing expression data of Nm-responsive host genes. Altogether, this model provides novel insights into Nm pathogenesis, including an impact of Nm on barrier properties and tight junction complexes, and suggests that the paracellular route may contribute to Nm traversal of BECs.}, language = {en} } @article{KrausBrinkSiegel2019, author = {Kraus, Amelie J. and Brink, Benedikt G. and Siegel, T. Nicolai}, title = {Efficient and specific oligo-based depletion of rRNA}, series = {Scientific Reports}, volume = {9}, journal = {Scientific Reports}, doi = {10.1038/s41598-019-48692-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-224829}, year = {2019}, abstract = {In most organisms, ribosomal RNA (rRNA) contributes to >85\% of total RNA. Thus, to obtain useful information from RNA-sequencing (RNA-seq) analyses at reasonable sequencing depth, typically, mature polyadenylated transcripts are enriched or rRNA molecules are depleted. Targeted depletion of rRNA is particularly useful when studying transcripts lacking a poly(A) tail, such as some non-coding RNAs (ncRNAs), most bacterial RNAs and partially degraded or immature transcripts. While several commercially available kits allow effective rRNA depletion, their efficiency relies on a high degree of sequence homology between oligonucleotide probes and the target RNA. This restricts the use of such kits to a limited number of organisms with conserved rRNA sequences. In this study we describe the use of biotinylated oligos and streptavidin-coated paramagnetic beads for the efficient and specific depletion of trypanosomal rRNA. Our approach reduces the levels of the most abundant rRNA transcripts to less than 5\% with minimal off-target effects. By adjusting the sequence of the oligonucleotide probes, our approach can be used to deplete rRNAs or other abundant transcripts independent of species. Thus, our protocol provides a useful alternative for rRNA removal where enrichment of polyadenylated transcripts is not an option and commercial kits for rRNA are not available.}, language = {en} } @article{LiaoTtofaliSlotkowskietal.2019, author = {Liao, Chunyu and Ttofali, Fani and Slotkowski, Rebecca A. and Denny, Steven R. and Cecil, Taylor D. and Leenay, Ryan T. and Keung, Albert J. and Beisel, Chase L.}, title = {Modular one-pot assembly of CRISPR arrays enables library generation and reveals factors influencing crRNA biogenesis}, series = {Nature Communications}, volume = {10}, journal = {Nature Communications}, doi = {10.1038/s41467-019-10747-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-236843}, year = {2019}, abstract = {CRISPR-Cas systems inherently multiplex through CRISPR arrays—whether to defend against different invaders or mediate multi-target editing, regulation, imaging, or sensing. However, arrays remain difficult to generate due to their reoccurring repeat sequences. Here, we report a modular, one-pot scheme called CRATES to construct CRISPR arrays and array libraries. CRATES allows assembly of repeat-spacer subunits using defined assembly junctions within the trimmed portion of spacers. Using CRATES, we construct arrays for the single-effector nucleases Cas9, Cas12a, and Cas13a that mediated multiplexed DNA/RNA cleavage and gene regulation in cell-free systems, bacteria, and yeast. CRATES further allows the one-pot construction of array libraries and composite arrays utilized by multiple Cas nucleases. Finally, array characterization reveals processing of extraneous CRISPR RNAs from Cas12a terminal repeats and sequence- and context-dependent loss of RNA-directed nuclease activity via global RNA structure formation. CRATES thus can facilitate diverse multiplexing applications and help identify factors impacting crRNA biogenesis.}, language = {en} } @article{NguyenSaisingTribellietal.2019, author = {Nguyen, Minh-Thu and Saising, Jongkon and Tribelli, Paula Maria and Nega, Mulugeta and Diene, Seydina M. and Fran{\c{c}}ois, Patrice and Schrenzel, Jacques and Spr{\"o}er, Cathrin and Bunk, Boyke and Ebner, Patrick and Hertlein, Tobias and Kumari, Nimerta and H{\"a}rtner, Thomas and Wistuba, Dorothee and Voravuthikunchai, Supayang P. and M{\"a}der, Ulrike and Ohlsen, Knut and G{\"o}tz, Friedrich}, title = {Inactivation of farR Causes High Rhodomyrtone Resistance and Increased Pathogenicity in Staphylococcus aureus}, series = {Frontiers in Microbiology}, volume = {10}, journal = {Frontiers in Microbiology}, doi = {10.3389/fmicb.2019.01157}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-224117}, year = {2019}, abstract = {Rhodomyrtone (Rom) is an acylphloroglucinol antibiotic originally isolated from leaves of Rhodomyrtus tomentosa. Rom targets the bacterial membrane and is active against a wide range of Gram-positive bacteria but the exact mode of action remains obscure. Here we isolated and characterized a spontaneous Rom-resistant mutant from the model strain Staphylococcus aureus HG001 (RomR) to learn more about the resistance mechanism. We showed that Rom-resistance is based on a single point mutation in the coding region of farR [regulator of fatty acid (FA) resistance] that causes an amino acid change from Cys to Arg at position 116 in FarR, that affects FarR activity. Comparative transcriptome analysis revealed that mutated farR affects transcription of many genes in distinct pathways. FarR represses for example the expression of its own gene (farR), its flanking gene farE (effector of FA resistance), and other global regulators such as agr and sarA. All these genes were consequently upregulated in the RomR clone. Particularly the upregulation of agr and sarA leads to increased expression of virulence genes rendering the RomR clone more cytotoxic and more pathogenic in a mouse infection model. The Rom-resistance is largely due to the de-repression of farE. FarE is described as an efflux pump for linoleic and arachidonic acids. We observed an increased release of lipids in the RomR clone compared to its parental strain HG001. If farE is deleted in the RomR clone, or, if native farR is expressed in the RomR strain, the corresponding strains become hypersensitive to Rom. Overall, we show here that the high Rom-resistance is mediated by overexpression of farE in the RomR clone, that FarR is an important regulator, and that the point mutation in farR (RomR clone) makes the clone hyper-virulent.}, language = {en} } @phdthesis{Lerch2018, author = {Lerch, Maike Franziska}, title = {Characterisation of a novel non-coding RNA and its involvement in polysaccharide intercellular adhesin (PIA)-mediated biofilm formation of \(Staphylococcus\) \(epidermidis\)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-155777}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Coagulase-negative staphylococci, particularly Staphylococcus epidermidis, have been recognised as an important cause of health care-associated infections due to catheterisation, and livestock-associated infections. The colonisation of indwelling medical devices is achieved by the formation of biofilms, which are large cell-clusters surrounded by an extracellular matrix. This extracellular matrix consists mainly of PIA (polysaccharide intercellular adhesin), which is encoded by the icaADBC-operon. The importance of icaADBC in clinical strains provoking severe infections initiated numerous investigations of this operon and its regulation within the last two decades. The discovery of a long transcript being located next to icaADBC, downstream of the regulator gene icaR, led to the hypothesis of a possible involvement of this transcript in the regulation of biofilm formation (Eckart, 2006). Goal of this work was to characterise this transcript, named ncRNA IcaZ, in molecular detail and to uncover its functional role in S. epidermidis. The ~400 nt long IcaZ is specific for ica-positive S. epidermidis and is transcribed in early- and mid-exponential growth phase as primary transcript. The promotor sequence and the first nucleotides of icaZ overlap with the 3' UTR of the preceding icaR gene, whereas the terminator sequence is shared by tRNAThr-4, being located convergently to icaZ. Deletion of icaZ resulted in a macroscopic biofilm-negative phenotype with highly diminished PIA-biofilm. Biofilm composition was analysed in vitro by classical crystal violet assays and in vivo by confocal laser scanning microscopy under flow conditions to display biofilm formation in real-time. The mutant showed clear defects in initial adherence and decreased cell-cell adherence, and was therefore not able to form a proper biofilm under flow in contrast to the wildtype. Restoration of PIA upon providing icaZ complementation from plasmids revealed inconsistent results in the various mutant backgrounds. To uncover the functional role of IcaZ, transcriptomic and proteomic analysis was carried out, providing some hints on candidate targets, but the varying biofilm phenotypes of wildtype and icaZ mutants made it difficult to identify direct IcaZ mRNA targets. Pulse expression of icaZ was then used as direct fishing method and computational target predictions were executed with candidate mRNAs from aforesaid approaches. The combined data of these analyses suggested an involvement of icaR in IcaZ-mediated biofilm control. Therefore, RNA binding assays were established for IcaZ and icaR mRNA. A positive gel shift was maintained with icaR 3' UTR and with 5'/3' icaR mRNA fusion product, whereas no gel shift was obtained with icaA mRNA. From these assays, it was assumed that IcaZ regulates icaR mRNA expression in S. epidermidis. S. aureus instead lacks ncRNA IcaZ and its icaR mRNA was shown to undergo autoregulation under so far unknown circumstances by intra- or intermolecular binding of 5' UTR and 3' UTR (Ruiz de los Mozos et al., 2013). Here, the Shine-Dalgarno sequence is blocked through 5'/3' UTR base pairing and RNase III, an endoribonuclease, degrades icaR mRNA, leading to translational blockade. In this work, icaR mRNA autoregulation was therefore analysed experimentally in S. epidermidis and results showed that this specific autoregulation does not take place in this organism. An involvement of RNase III in the degradation process could not be verified here. GFP-reporter plasmids were generated to visualise the interaction, but have to be improved for further investigations. In conclusion, IcaZ was found to interact with icaR mRNA, thereby conceivably interfering with translation initiation of repressor IcaR, and thus to promote PIA synthesis and biofilm formation. In addition, the environmental factor ethanol was found to induce icaZ expression, while only weak or no effects were obtained with NaCl and glucose. Ethanol, actually is an ingredient of disinfectants in hospital settings and known as efficient effector for biofilm induction. As biofilm formation on medical devices is a critical factor hampering treatment of S. epidermidis infections in clinical care, the results of this thesis do not only contribute to better understanding of the complex network of biofilm regulation in staphylococci, but may also have practical relevance in the future.}, subject = {Biofilm}, language = {en} } @phdthesis{Selle2018, author = {Selle, Martina}, title = {Interaktionen zwischen sekretierten Proteinen von Staphylococcus aureus und der Immunantwort des Wirtes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-128031}, school = {Universit{\"a}t W{\"u}rzburg}, pages = {XVII, 216}, year = {2018}, abstract = {Staphylococcus aureus ist ein grampositives Bakterium, welches h{\"a}ufig als kommensaler Besiedler auf der Nasen- und Rachenschleimhaut von S{\"a}ugetieren vorkommt. Dar{\"u}ber hinaus besitzt dieser fakultativ pathogene Mikroorganismus die F{\"a}higkeit schwer zu behandelnde Krankenhausinfektionen auszul{\"o}sen. Aufgrund der weiten Verbreitung von Antibiotikaresistenzen und dem Mangel an effektiven Therapien, verursachen S. aureus Infektionen j{\"a}hrlich enorme Kosten f{\"u}r das Gesundheitssystem. S. aureus wird meist von der Nase zum prim{\"a}ren Infektionsort {\"u}bertragen, wodurch zun{\"a}chst sehr h{\"a}ufig Wund- und Weichteilinfektionen hervor gerufen werden. Von diesem prim{\"a}ren Infektionsort ausgehend, kann der Erreger tiefer liegende Gewebsschichten infizieren oder sich {\"u}ber den Blutstrom im gesamten Organismus ausbreiten. Das Spektrum an Krankheitsbildern reicht von leichten Abszessen der Haut bis zu schweren, lebensbedrohlichen Erkrankungen wie Pneumonien und akuter Sepsis. F{\"u}r die erfolgreiche Kolonisierung und Infektion des Wirtes exprimiert S. aureus eine Vielzahl unterschiedlicher Virulenzfaktoren. Die wohl gr{\"o}ßte Gruppe an Virulenzfaktoren umfasst die Proteine, die an der Immunevasion und der Umgehung von verschiedenen Abwehrstrategien des Immunsystems beteiligt sind. Das bisherige Wissen {\"u}ber die Interaktion von S. aureus mit dem Immunsystem des Wirtes und die zugrunde liegenden Pathogenit{\"a}tsmechanismen ist bisher limitiert. Um neue Erkenntnisse {\"u}ber die Interaktion von Wirt und Pathogen zu erlangen, wurden im Rahmen dieser Arbeit bislang unbekannte sekretierte und Oberfl{\"a}chen-assoziierte Proteine von S. aureus funktionell charakterisiert. Die Funktion der ausgew{\"a}hlten Proteine wurde in vitro hinsichtlich Einfluss auf Komponenten des Immunsystems, Adh{\"a}sion an Wirtsfaktoren und Invasion in eukaryotische Zellen untersucht. Mit Hilfe der vorangegangenen in-vitro-Charakterisierung der putativen Virulenzfaktoren, konnte f{\"u}r die cytoplasmatische Adenylosuccinat-Synthase PurA eine neuartige Funktion identifiziert werden. PurA ist bekannt als essentielles Enzym der de novo Purin-Synthese. In dieser Arbeit wurde nun gezeigt, dass PurA zudem an der Immunevasion beteiligt ist. Durch die Bindung des humanen Faktor H des Komplementsystems sch{\"u}tzt PurA S. aureus vor der lytischen Aktivit{\"a}t des Komplementsystems und verhindert die Opsonisierung des Pathogens. Basierend auf diesen Ergebnissen wurde PurA detailliert charakterisiert. In Bindungsstudien mit rekombinantem Faktor H und PurA wurde eine direkte Interaktion beider Proteine nachgewiesen, wobei Faktor H mit dem N-terminalen Bereich von PurA interagiert. Weiterhin konnte PurA durch Immunfluoreszenz und FACS-Analysen auf der Zelloberfl{\"a}che nachgewiesen werden, wo es wahrscheinlich mit der Zellwand assoziiert vorliegt. Dort rekrutiert es Faktor H an die bakterielle Oberfl{\"a}che und verhindert das Fortschreiten der Komplement-Kaskade und damit die Lyse des Pathogens. Aufgrund der Multifunktionalit{\"a}t z{\"a}hlt PurA somit zur Gruppe der Moonlighting Proteine. Des Weiteren wurde die Rolle von PurA im Infektionsgeschehen in zwei unabh{\"a}ngigen Tiermodellen untersucht. In beiden Modellen wurde ein signifikant reduziertes Virulenzpotential der ΔpurA-Mutante beobachtet. Zuk{\"u}nftig soll gekl{\"a}rt werden, ob die verminderte Virulenz in der fehlenden Komplementevasion oder im Defekt in der Purin-Synthese begr{\"u}ndet ist. Aufgrund der sehr starken Attenuation in allen untersuchten Infektionsmodellen sollte PurA als potentielles Target f{\"u}r eine Therapie von S. aureus Infektionen weiter charakterisiert werden. Im Ergebnis dieser Arbeit wurde demnach mit PurA ein neues Moonlighting Protein identifiziert, das als Inhibitor des Komplementsystems wesentlich zur Immunevasion von S. aureus beitr{\"a}gt. F{\"u}r das bessere Verst{\"a}ndnis der humoralen S. aureus-spezifischen Immunantwort, Unterschieden in der Antik{\"o}rperantwort und der gebildeten Antik{\"o}rperspezifit{\"a}ten wurde weiterhin das w{\"a}hrend der Kolonisierung und Infektion gebildete S. aureus-spezifische Antik{\"o}rperprofil untersucht. Dazu wurden Plasmen von humanen nasalen Tr{\"a}gern und Nicht-Tr{\"a}gern sowie murine Seren von infizierten Tieren untersucht. Insbesondere wurde das Pathogen-spezifische Antik{\"o}rperprofil in unterschiedlichen Infektionsmodellen mit Hilfe eines Proteinarrays analysiert, der im Rahmen dieser Arbeit in einer Kooperation mit der Firma Alere Technologies (Jena, Deutschland) und universit{\"a}ren Forschergruppen der Universit{\"a}ten Greifswald, M{\"u}nster und Jena mitentwickelt wurde. Die Antik{\"o}rperprofile von intramuskul{\"a}r und intraven{\"o}s infizierten Tieren resultierten in jeweils spezifischen Antik{\"o}rperprofilen. Diese Ergebnisse deuten auf einen Zusammenhang zwischen der Art der Infektion und der gebildeten Antik{\"o}rperspezifit{\"a}ten hin. Wahrscheinlich beruht dies auf einer gewebespezifischen Genexpression als Anpassung an die individuellen Bed{\"u}rfnisse im Wirtsorganismus. Das ausgebildete Antik{\"o}rperprofil gibt somit einen Einblick in das Expressionsmuster von Virulenzfaktoren von S. aureus unter in vivo Bedingungen und tr{\"a}gt damit zum Verst{\"a}ndnis der komplexen Interaktion von Pathogen und Wirt bei. Diese Untersuchungen erg{\"a}nzen zudem die bisherigen Kenntnisse {\"u}ber die Anpassung der humoralen Immunantwort an eine asymptomatische Kolonisierung im Gegensatz zu einer akuten Infektion durch S. aureus. Dar{\"u}ber hinaus k{\"o}nnen die gewonnenen Ergebnisse f{\"u}r diagnostische Zwecke und zur Identifikation von neuen Zielstrukturen f{\"u}r eine Vakzin-Entwicklung genutzt werden.}, subject = {Staphylococcus aureus}, language = {de} } @article{SanyalWallaschekGlassetal.2018, author = {Sanyal, Anirban and Wallaschek, Nina and Glass, Mandy and Flamand, Louis and Wight, Darren J. and Kaufer, Benedikt B.}, title = {The ND10 Complex Represses Lytic Human Herpesvirus 6A Replication and Promotes Silencing of the Viral Genome}, series = {Viruses}, volume = {10}, journal = {Viruses}, number = {8}, doi = {10.3390/v10080401}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-227337}, pages = {401, 1-11}, year = {2018}, abstract = {Human herpesvirus 6A (HHV-6A) replicates in peripheral blood mononuclear cells (PBMCs) and various T-cell lines in vitro. Intriguingly, the virus can also establish latency in these cells, but it remains unknown what influences the decision between lytic replication and the latency of the virus. Incoming virus genomes are confronted with the nuclear domain 10 (ND10) complex as part of an intrinsic antiviral response. Most herpesviruses can efficiently subvert ND10, but its role in HHV-6A infection remains poorly understood. In this study, we investigated if the ND10 complex affects HHV-6A replication and contributes to the silencing of the virus genome during latency. We could demonstrate that ND10 complex was not dissociated upon infection, while the number of ND10 bodies was reduced in lytically infected cells. Virus replication was significantly enhanced upon knock down of the ND10 complex using shRNAs against its major constituents promyelocytic leukemia protein (PML), hDaxx, and Sp100. In addition, we could demonstrate that viral genes are more efficiently silenced in the presence of a functional ND10 complex. Our data thereby provides the first evidence that the cellular ND10 complex plays an important role in suppressing HHV-6A lytic replication and the silencing of the virus genome in latently infected cells.}, language = {en} } @article{JarickBertscheStahletal.2018, author = {Jarick, Marcel and Bertsche, Ute and Stahl, Mark and Schultz, Daniel and Methling, Karen and Lalk, Michael and Stigloher, Christian and Steger, Mirco and Schlosser, Andreas and Ohlsen, Knut}, title = {The serine/threonine kinase Stk and the phosphatase Stp regulate cell wall synthesis in Staphylococcus aureus}, series = {Scientific Reports}, volume = {8}, journal = {Scientific Reports}, number = {13693}, doi = {10.1038/s41598-018-32109-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-177333}, year = {2018}, abstract = {The cell wall synthesis pathway producing peptidoglycan is a highly coordinated and tightly regulated process. Although the major components of bacterial cell walls have been known for decades, the complex regulatory network controlling peptidoglycan synthesis and many details of the cell division machinery are not well understood. The eukaryotic-like serine/threonine kinase Stk and the cognate phosphatase Stp play an important role in cell wall biosynthesis and drug resistance in S. aureus. We show that stp deletion has a pronounced impact on cell wall synthesis. Deletion of stp leads to a thicker cell wall and decreases susceptibility to lysostaphin. Stationary phase Δstp cells accumulate peptidoglycan precursors and incorporate higher amounts of incomplete muropeptides with non-glycine, monoglycine and monoalanine interpeptide bridges into the cell wall. In line with this cell wall phenotype, we demonstrate that the lipid II:glycine glycyltransferase FemX can be phosphorylated by the Ser/Thr kinase Stk in vitro. Mass spectrometric analyses identify Thr32, Thr36 and Ser415 as phosphoacceptors. The cognate phosphatase Stp dephosphorylates these phosphorylation sites. Moreover, Stk interacts with FemA and FemB, but is unable to phosphorylate them. Our data indicate that Stk and Stp modulate cell wall synthesis and cell division at several levels.}, language = {en} } @article{BarYosefGildorRamirezZavalaetal.2018, author = {Bar-Yosef, Hagit and Gildor, Tsvia and Ram{\´i}rez-Zavala, Bernardo and Schmauch, Christian and Weissman, Ziva and Pinsky, Mariel and Naddaf, Rawi and Morschh{\"a}user, Joachim and Arkowitz, Robert A. and Kornitzer, Daniel}, title = {A global analysis of kinase function in Candida albicans hyphal morphogenesis reveals a role for the endocytosis regulator Akl1}, series = {Frontiers in Cellular and Infection Microbiology}, volume = {8}, journal = {Frontiers in Cellular and Infection Microbiology}, issn = {2235-2988}, doi = {10.3389/fcimb.2018.00017}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-197204}, year = {2018}, abstract = {The human pathogenic fungus Candida albicans can switch between yeast and hyphal morphologies as a function of environmental conditions and cellular physiology. The yeast-to-hyphae morphogenetic switch is activated by well-established, kinase-based signal transduction pathways that are induced by extracellular stimuli. In order to identify possible inhibitory pathways of the yeast-to-hyphae transition, we interrogated a collection of C. albicans protein kinases and phosphatases ectopically expressed under the regulation of the TETon promoter. Proportionately more phosphatases than kinases were identified that inhibited hyphal morphogenesis, consistent with the known role of protein phosphorylation in hyphal induction. Among the kinases, we identified AKL1 as a gene that significantly suppressed hyphal morphogenesis in serum. Akl1 specifically affected hyphal elongation rather than initiation: overexpression of AKL1 repressed hyphal growth, and deletion of AKL1 resulted in acceleration of the rate of hyphal elongation. Akl1 suppressed fluid-phase endocytosis, probably via Pan1, a putative clathrin-mediated endocytosis scaffolding protein. In the absence of Akl1, the Pan1 patches were delocalized from the sub-apical region, and fluid-phase endocytosis was intensified. These results underscore the requirement of an active endocytic pathway for hyphal morphogenesis. Furthermore, these results suggest that under standard conditions, endocytosis is rate-limiting for hyphal elongation.}, language = {en} } @phdthesis{Hampe2018, author = {Hampe, Irene Aurelia Ida}, title = {Analysis of the mechanism and the regulation of histatin 5 resistance in \(Candida\) \(albicans\)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-159634}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Antimycotics such as fluconazole are frequently used to treat C. albicans infections of the oral mucosa. Prolonged treatment of the fungal infection with fluconazole pose a risk to resistance development. C. albicans can adapt to these stressful environmental changes by regulation of gene expression or by producing genetically altered variants that arise in the population. Adapted variants frequently carry activating mutations in zinc cluster transcription factors, which cause the upregulation of their target genes, including genes encoding efflux pumps that confer drug resistance. MDR1, regulated by the zinc cluster transcription factor Mrr1, as well as CDR1 and CDR2, regulated by the zinc cluster transcription factor Tac1, are well-known examples of genes encoding efflux pumps that extrude the antimycotic fluconazole from the fungal cell and thus contribute to the survival of the fungus. In this study, it was investigated if C. albicans can develop resistance to the antimicrobial peptide histatin 5, which serves as the first line of defence in the oral cavity of the human host. Recently, it was shown that C. albicans transports histatin 5 outside of the Candia cell via the efflux pump Flu1. As efflux pumps are often regulated by zinc cluster transcription factors, the Flu1 efflux pump could also be regulated by a zinc cluster transcription factor which could in a hyperactive form upregulate the expression of the efflux pump, resulting in increased export of histatin 5 and consequently in histatin 5 resistance. In order to find a zinc cluster transcription factor that upregulates FLU1 expression, a comprehensive library of C. albicans strains containing artificially activated forms of zinc cluster transcription factors was screened for suitable candidates. The screening was conducted on medium containing mycophenolic acid because mycophenolic acid is also a substrate of Flu1 and a strain expressing a hyperactive zinc cluster transcription factor that upregulates FLU1 expression should exhibit an easily recognisable mycophenolic acid-resistant phenotype. Further, FACS analysis, quantitative real-time RT-PCR analysis, broth microdilution assays as well as histatin 5 assays were conducted to analyse the mechanism and the regulation of histatin 5 resistance. Several zinc cluster transcription factors caused mycophenolic acid resistance and upregulated FLU1 expression. Of those, only hyperactive Mrr1 was able to confer increased histatin 5 resistance. Finding Mrr1 to confer histatin 5 resistance was highly interesting as fluconazole-resistant strains with naturally occurring Mrr1 gain of function mutations exist, which were isolated from HIV-infected patients with oral candidiasis. These Mrr1 gain of function mutations as well as artificially activated Mrr1 cause fluconazole resistance by upregulation of the efflux pump MDR1 and other target genes. In the course of the study, it was found that expression of different naturally occurring MRR1 gain-of-function mutations in the SC5314 wild type background caused increased FLU1 expression and increased histatin 5 resistance. The same was true for fluconazole-resistant clinical isolates with Mrr1 gain of function mutations, which also caused the overexpression of FLU1. Those cells were less efficiently killed by histatin 5 dependent on Mrr1. Surprisingly, FLU1 contributed only little to histatin 5 resistance, rather, overexpression of MDR1 mainly contributed to the Mrr1-mediated histatin 5 resistance, but also additional Mrr1-target genes were involved. These target genes are yet to be uncovered. Moreover, if a link between the yet unknown Mrr1-target genes contributing to fluconazole resistance and increased histatin 5 resistance can be drawn remains to be discovered upon finding of the responsible target genes. Collectively, this study contributes to the understanding of the impact of prolonged antifungal exposure on the interaction between host and fungus. Drug therapy can give rise to resistance evolution resulting in strains that have not only developed resistance to fluconazole but also to an innate host mechanism, which allows adaption to the host niche even in the absence of the drug.}, subject = {Histatin 5}, language = {en} } @article{FoerstnerReuscherHaberzettletal.2018, author = {F{\"o}rstner, Konrad U and Reuscher, Carina M and Haberzettl, Kerstin and Weber, Lennart and Klug, Gabriele}, title = {RNase E cleavage shapes the transcriptome of Rhodobacter sphaeroides and strongly impacts phototrophic growth}, series = {Life Science Alliance}, volume = {1}, journal = {Life Science Alliance}, number = {4}, doi = {10.26508/lsa.201800080}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-177139}, pages = {e201800080}, year = {2018}, abstract = {Bacteria adapt to changing environmental conditions by rapid changes in their transcriptome. This is achieved not only by adjusting rates of transcription but also by processing and degradation of RNAs. We applied TIER-Seq (transiently inactivating an endoribonuclease followed by RNA-Seq) for the transcriptome-wide identification of RNase E cleavage sites and of 5′ RNA ends, which are enriched when RNase E activity is reduced in Rhodobacter sphaeroides. These results reveal the importance of RNase E for the maturation and turnover of mRNAs, rRNAs, and sRNAs in this guanine-cytosine-rich α-proteobacterium, some of the latter have well-described functions in the oxidative stress response. In agreement with this, a role of RNase E in the oxidative stress response is demonstrated. A remarkably strong phenotype of a mutant with reduced RNase E activity was observed regarding the formation of photosynthetic complexes and phototrophic growth, whereas there was no effect on chemotrophic growth.}, language = {en} } @article{YuVogelFoerstner2018, author = {Yu, Sung-Huan and Vogel, J{\"o}rg and F{\"o}rstner, Konrad U.}, title = {ANNOgesic: a Swiss army knife for the RNA-seq based annotation of bacterial/archaeal genomes}, series = {GigaScience}, volume = {7}, journal = {GigaScience}, doi = {10.1093/gigascience/giy096}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-178942}, year = {2018}, abstract = {To understand the gene regulation of an organism of interest, a comprehensive genome annotation is essential. While some features, such as coding sequences, can be computationally predicted with high accuracy based purely on the genomic sequence, others, such as promoter elements or noncoding RNAs, are harder to detect. RNA sequencing (RNA-seq) has proven to be an efficient method to identify these genomic features and to improve genome annotations. However, processing and integrating RNA-seq data in order to generate high-resolution annotations is challenging, time consuming, and requires numerous steps. We have constructed a powerful and modular tool called ANNOgesic that provides the required analyses and simplifies RNA-seq-based bacterial and archaeal genome annotation. It can integrate data from conventional RNA-seq and differential RNA-seq and predicts and annotates numerous features, including small noncoding RNAs, with high precision. The software is available under an open source license (ISCL) at https://pypi.org/project/ANNOgesic/.}, language = {en} } @article{BalasubramanianSkafHolzgrabeetal.2018, author = {Balasubramanian, Srikkanth and Skaf, Joseph and Holzgrabe, Ulrike and Bharti, Richa and F{\"o}rstner, Konrad U. and Ziebuhr, Wilma and Humeida, Ute H. and Abdelmohsen, Usama R. and Oelschlaeger, Tobias A.}, title = {A new bioactive compound from the marine sponge-derived Streptomyces sp. SBT348 inhibits staphylococcal growth and biofilm formation}, series = {Frontiers in Microbiology}, volume = {9}, journal = {Frontiers in Microbiology}, doi = {10.3389/fmicb.2018.01473}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-221408}, year = {2018}, abstract = {Staphylococcus epidermidis, the common inhabitant of human skin and mucosal surfaces has emerged as an important pathogen in patients carrying surgical implants and medical devices. Entering the body via surgical sites and colonizing the medical devices through formation of multi-layered biofilms leads to refractory and persistent device-related infections (DRIs). Staphylococci organized in biofilms are more tolerant to antibiotics and immune responses, and thus are difficult-to-treat. The consequent morbidity and mortality, and economic losses in health care systems has strongly necessitated the need for development of new anti-bacterial and anti-biofilm-based therapeutics. In this study, we describe the biological activity of a marine sponge-derived Streptomyces sp. SBT348 extract in restraining staphylococcal growth and biofilm formation on polystyrene, glass, medically relevant titan metal, and silicone surfaces. A bioassay-guided fractionation was performed to isolate the active compound (SKC3) from the crude SBT348 extract. Our results demonstrated that SKC3 effectively inhibits the growth (MIC: 31.25 \(\mu\)g/ml) and biofilm formation (sub-MIC range: 1.95-<31.25 \(\mu\)g/ml) of S. epidermidis RP62A in vitro. Chemical characterization of SKC3 by heat and enzyme treatments, and mass spectrometry (HRMS) revealed its heat-stable and non-proteinaceous nature, and high molecular weight (1258.3 Da). Cytotoxicity profiling of SKC3 in vitro on mouse fibroblast (NIH/3T3) and macrophage (J774.1) cell lines, and in vivo on the greater wax moth larvae Galleria mellonella revealed its non-toxic nature at the effective dose. Transcriptome analysis of SKC3 treated S. epidermidis RP62A has further unmasked its negative effect on central metabolism such as carbon flux as well as, amino acid, lipid, and energy metabolism. Taken together, these findings suggest a potential of SKC3 as a putative drug to prevent staphylococcal DRIs.}, language = {en} } @article{BurySoundararajanBhartietal.2018, author = {Bury, Susanne and Soundararajan, Manonmani and Bharti, Richa and von B{\"u}nau, Rudolf and F{\"o}rstner, Konrad U. and Oelschlaeger, Tobias A.}, title = {The probiotic escherichia coli strain Nissle 1917 combats lambdoid bacteriophages stx and lambda}, series = {Frontiers in Microbiology}, volume = {9}, journal = {Frontiers in Microbiology}, doi = {10.3389/fmicb.2018.00929}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-221960}, year = {2018}, abstract = {Shiga toxin (Stx) producing E. coli (STEC) such as Enterohemorrhagic E. coli (EHEC) are the major cause of foodborne illness in humans. In vitro studies showed the probiotic Escherichia coil strain Nissle 1917 (EcN) to efficiently inhibit the production of Stx. Life threatening EHEC strains as for example the serotype 0104:H4, responsible for the great outbreak in 2011 in Germany, evolutionary developed from certain E. coll strains which got infected by stx2-encoding lambdoid phages turning the E. coil into lysogenic and subsequently Stx producing strains. Since antibiotics induce stx genes and Stx production, EHEC infected persons are not recommended to be treated with antibiotics. Therefore, EcN might be an alternative medication. However, because even commensal E. coli strains might be converted into Stx-producers after becoming host to a stx encoding prophage, we tested EcN for stx-phage genome integration. Our experiments revealed the resistance of EcN toward not only stx-phages but also against lambda-phages. This resistance was not based on the lack of or by mutated phage receptors. Rather it involved the expression of a phage repressor (pr) gene of a defective prophage in EcN which was able to partially protect E. coli K-12 strain MG1655 against stx and lambda phage infection. Furthermore, we observed EcN to inactivate phages and thereby to protect E. coli K-12 strains against infection by stx- as well as lambda-phages. Inactivation of lambda-phages was due to binding of lambda-phages to LamB of EcN whereas inactivation of stx-phages was caused by a thermostable protein of EcN. These properties together with its ability to inhibit Stx production make EcN a good candidate for the prevention of illness caused by EHEC and probably for the treatment of already infected people.}, language = {en} }