@article{StelznerBoynyHertleinetal.2021, author = {Stelzner, Kathrin and Boyny, Aziza and Hertlein, Tobias and Sroka, Aneta and Moldovan, Adriana and Paprotka, Kerstin and Kessie, David and Mehling, Helene and Potempa, Jan and Ohlsen, Knut and Fraunholz, Martin J. and Rudel, Thomas}, title = {Intracellular Staphylococcus aureus employs the cysteine protease staphopain A to induce host cell death in epithelial cells}, series = {PLoS Pathogens}, volume = {17}, journal = {PLoS Pathogens}, number = {9}, doi = {10.1371/journal.ppat.1009874}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-263908}, year = {2021}, abstract = {Staphylococcus aureus is a major human pathogen, which can invade and survive in non-professional and professional phagocytes. Uptake by host cells is thought to contribute to pathogenicity and persistence of the bacterium. Upon internalization by epithelial cells, cytotoxic S. aureus strains can escape from the phagosome, replicate in the cytosol and induce host cell death. Here, we identified a staphylococcal cysteine protease to induce cell death after translocation of intracellular S. aureus into the host cell cytoplasm. We demonstrated that loss of staphopain A function leads to delayed onset of host cell death and prolonged intracellular replication of S. aureus in epithelial cells. Overexpression of staphopain A in a non-cytotoxic strain facilitated intracellular killing of the host cell even in the absence of detectable intracellular replication. Moreover, staphopain A contributed to efficient colonization of the lung in a mouse pneumonia model. In phagocytic cells, where intracellular S. aureus is exclusively localized in the phagosome, staphopain A did not contribute to cytotoxicity. Our study suggests that staphopain A is utilized by S. aureus to exit the epithelial host cell and thus contributes to tissue destruction and dissemination of infection. Author summary Staphylococcus aureus is an antibiotic-resistant pathogen that emerges in hospital and community settings and can cause a variety of diseases ranging from skin abscesses to lung inflammation and blood poisoning. The bacterium can asymptomatically colonize the upper respiratory tract and skin of humans and take advantage of opportune conditions, like immunodeficiency or breached barriers, to cause infection. Although S. aureus was not regarded as intracellular bacterium, it can be internalized by human cells and subsequently exit the host cells by induction of cell death, which is considered to cause tissue destruction and spread of infection. The bacterial virulence factors and underlying molecular mechanisms involved in the intracellular lifestyle of S. aureus remain largely unknown. We identified a bacterial cysteine protease to contribute to host cell death of epithelial cells mediated by intracellular S. aureus. Staphopain A induced killing of the host cell after translocation of the pathogen into the cell cytosol, while bacterial proliferation was not required. Further, the protease enhanced survival of the pathogen during lung infection. These findings reveal a novel, intracellular role for the bacterial protease staphopain A.}, language = {en} } @article{KayisogluSchlegelBartfeld2021, author = {Kayisoglu, {\"O}zge and Schlegel, Nicolas and Bartfeld, Sina}, title = {Gastrointestinal epithelial innate immunity-regionalization and organoids as new model}, series = {Journal of Molecular Medicine}, volume = {99}, journal = {Journal of Molecular Medicine}, number = {4}, doi = {10.1007/s00109-021-02043-9}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-265220}, pages = {517-530}, year = {2021}, abstract = {The human gastrointestinal tract is in constant contact with microbial stimuli. Its barriers have to ensure co-existence with the commensal bacteria, while enabling surveillance of intruding pathogens. At the centre of the interaction lies the epithelial layer, which marks the boundaries of the body. It is equipped with a multitude of different innate immune sensors, such as Toll-like receptors, to mount inflammatory responses to microbes. Dysfunction of this intricate system results in inflammation-associated pathologies, such as inflammatory bowel disease. However, the complexity of the cellular interactions, their molecular basis and their development remains poorly understood. In recent years, stem cell-derived organoids have gained increasing attention as promising models for both development and a broad range of pathologies, including infectious diseases. In addition, organoids enable the study of epithelial innate immunity in vitro. In this review, we focus on the gastrointestinal epithelial barrier and its regional organization to discuss innate immune sensing and development.}, language = {en} } @article{PernitzschAlzheimerBremeretal.2021, author = {Pernitzsch, Sandy R. and Alzheimer, Mona and Bremer, Belinda U. and Robbe-Saule, Marie and De Reuse, Hilde and Sharma, Cynthia M.}, title = {Small RNA mediated gradual control of lipopolysaccharide biosynthesis affects antibiotic resistance in Helicobacter pylori}, series = {Nature Communications}, volume = {12}, journal = {Nature Communications}, number = {1}, doi = {10.1038/s41467-021-24689-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-261536}, year = {2021}, abstract = {The small, regulatory RNA RepG (Regulator of polymeric G-repeats) regulates the expression of the chemotaxis receptor TlpB in Helicobacter pylori by targeting a variable G-repeat in the tlpB mRNA leader. Here, we show that RepG additionally controls lipopolysaccharide (LPS) phase variation by also modulating the expression of a gene (hp0102) that is co-transcribed with tlpB. The hp0102 gene encodes a glycosyltransferase required for LPS O-chain biosynthesis and in vivo colonization of the mouse stomach. The G-repeat length defines a gradual (rather than ON/OFF) control of LPS biosynthesis by RepG, and leads to gradual resistance to a membrane-targeting antibiotic. Thus, RepG-mediated modulation of LPS structure might impact host immune recognition and antibiotic sensitivity, thereby helping H. pylori to adapt and persist in the host. The small RNA RepG modulates expression of chemotaxis receptor TlpB in Helicobacter pylori by targeting a length-variable G-repeat in the tlpB mRNA. Here, Pernitzsch et al. show that RepG also gradually controls lipopolysaccharide biosynthesis, antibiotic susceptibility, and in-vivo colonization of the stomach, by regulating a gene that is co-transcribed with tlpB.}, language = {en} } @article{ElMoualiGerovacMineikaitėetal.2021, author = {El Mouali, Youssef and Gerovac, Milan and Mineikaitė, Raminta and Vogel, J{\"o}rg}, title = {In vivo targets of Salmonella FinO include a FinP-like small RNA controlling copy number of a cohabitating plasmid}, series = {Nucleic Acids Research}, volume = {49}, journal = {Nucleic Acids Research}, number = {9}, doi = {10.1093/nar/gkab281}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-261072}, pages = {5319-5335}, year = {2021}, abstract = {FinO-domain proteins represent an emerging family of RNA-binding proteins (RBPs) with diverse roles in bacterial post-transcriptional control and physiology. They exhibit an intriguing targeting spectrum, ranging from an assumed single RNA pair (FinP/traJ) for the plasmid-encoded FinO protein, to transcriptome-wide activity as documented for chromosomally encoded ProQ proteins. Thus, the shared FinO domain might bear an unusual plasticity enabling it to act either selectively or promiscuously on the same cellular RNA pool. One caveat to this model is that the full suite of in vivo targets of the assumedly highly selective FinO protein is unknown. Here, we have extensively profiled cellular transcripts associated with the virulence plasmid-encoded FinO in Salmonella enterica. While our analysis confirms the FinP sRNA of plasmid pSLT as the primary FinO target, we identify a second major ligand: the RepX sRNA of the unrelated antibiotic resistance plasmid pRSF1010. FinP and RepX are strikingly similar in length and structure, but not in primary sequence, and so may provide clues to understanding the high selectivity of FinO-RNA interactions. Moreover, we observe that the FinO RBP encoded on the Salmonella virulence plasmid controls the replication of a cohabitating antibiotic resistance plasmid, suggesting cross-regulation of plasmids on the RNA level.}, language = {en} } @article{MottolaRamirezZavalaHuenningeretal.2021, author = {Mottola, Austin and Ram{\´i}rez-Zavala, Bernardo and H{\"u}nninger, Kerstin and Kurzai, Oliver and Morschh{\"a}user, Joachim}, title = {The zinc cluster transcription factor Czf1 regulates cell wall architecture and integrity in Candida albicans}, series = {Molecular Microbiology}, volume = {116}, journal = {Molecular Microbiology}, number = {2}, doi = {10.1111/mmi.14727}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259583}, pages = {483-497}, year = {2021}, abstract = {The fungal cell wall is essential for the maintenance of cellular integrity and mediates interactions of the cells with the environment. It is a highly flexible organelle whose composition and organization is modulated in response to changing growth conditions. In the pathogenic yeast Candida albicans, a network of signaling pathways regulates the structure of the cell wall, and mutants with defects in these pathways are hypersensitive to cell wall stress. By harnessing a library of genetically activated forms of all C. albicans zinc cluster transcription factors, we found that a hyperactive Czf1 rescued the hypersensitivity to cell wall stress of different protein kinase deletion mutants. The hyperactive Czf1 induced the expression of many genes with cell wall-related functions and caused visible changes in the cell wall structure. C. albicans czf1Δ mutants were hypersensitive to the antifungal drug caspofungin, which inhibits cell wall biosynthesis. The changes in cell wall architecture caused by hyperactivity or absence of Czf1 resulted in an increased recognition of C. albicans by human neutrophils. Our results show that Czf1, which is known as a regulator of filamentous growth and white-opaque switching, controls the expression of cell wall genes and modulates the architecture of the cell wall.}, language = {en} } @article{SvenssonSharma2022, author = {Svensson, Sarah L. and Sharma, Cynthia M.}, title = {Small RNAs that target G-rich sequences are generated by diverse biogenesis pathways in Epsilonproteobacteria}, series = {Molecular Microbiology}, volume = {117}, journal = {Molecular Microbiology}, doi = {10.1111/mmi.14850}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259602}, pages = {215-233}, year = {2022}, abstract = {Bacterial small RNAs (sRNAs) are widespread post-transcriptional regulators that control bacterial stress responses and virulence. Nevertheless, little is known about how they arise and evolve. Homologs can be difficult to identify beyond the strain level using sequence-based approaches, and similar functionalities can arise by convergent evolution. Here, we found that the virulence-associated CJnc190 sRNA of the foodborne pathogen Campylobacter jejuni resembles the RepG sRNA from the gastric pathogen Helicobacter pylori. However, while both sRNAs bind G-rich sites in their target mRNAs using a C/U-rich loop, they largely differ in their biogenesis. RepG is transcribed from a stand-alone gene and does not require processing, whereas CJnc190 is transcribed from two promoters as precursors that are processed by RNase III and also has a cis-encoded antagonist, CJnc180. By comparing CJnc190 homologs in diverse Campylobacter species, we show that RNase III-dependent processing of CJnc190 appears to be a conserved feature even outside of C. jejuni. We also demonstrate the CJnc180 antisense partner is expressed in C. coli, yet here might be derived from the 3'UTR (untranslated region) of an upstream flagella-related gene. Our analysis of G-tract targeting sRNAs in Epsilonproteobacteria demonstrates that similar sRNAs can have markedly different biogenesis pathways.}, language = {en} } @article{PrezzaRyanMaedleretal.2022, author = {Prezza, Gianluca and Ryan, Daniel and M{\"a}dler, Gohar and Reichardt, Sarah and Barquist, Lars and Westermann, Alexander J.}, title = {Comparative genomics provides structural and functional insights into Bacteroides RNA biology}, series = {Molecular Microbiology}, volume = {117}, journal = {Molecular Microbiology}, number = {1}, doi = {10.1111/mmi.14793}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259594}, pages = {67-85}, year = {2022}, abstract = {Bacteria employ noncoding RNA molecules for a wide range of biological processes, including scaffolding large molecular complexes, catalyzing chemical reactions, defending against phages, and controlling gene expression. Secondary structures, binding partners, and molecular mechanisms have been determined for numerous small noncoding RNAs (sRNAs) in model aerobic bacteria. However, technical hurdles have largely prevented analogous analyses in the anaerobic gut microbiota. While experimental techniques are being developed to investigate the sRNAs of gut commensals, computational tools and comparative genomics can provide immediate functional insight. Here, using Bacteroides thetaiotaomicron as a representative microbiota member, we illustrate how comparative genomics improves our understanding of RNA biology in an understudied gut bacterium. We investigate putative RNA-binding proteins and predict a Bacteroides cold-shock protein homolog to have an RNA-related function. We apply an in silico protocol incorporating both sequence and structural analysis to determine the consensus structures and conservation of nine Bacteroides noncoding RNA families. Using structure probing, we validate and refine these predictions and deposit them in the Rfam database. Through synteny analyses, we illustrate how genomic coconservation can serve as a predictor of sRNA function. Altogether, this work showcases the power of RNA informatics for investigating the RNA biology of anaerobic microbiota members.}, language = {en} } @article{MasotaVoggOhlsenetal.2021, author = {Masota, Nelson E. and Vogg, Gerd and Ohlsen, Knut and Holzgrabe, Ulrike}, title = {Reproducibility challenges in the search for antibacterial compounds from nature}, series = {PLoS One}, volume = {16}, journal = {PLoS One}, number = {7}, doi = {10.1371/journal.pone.0255437}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-260239}, year = {2021}, abstract = {Background Reproducibility of reported antibacterial activities of plant extracts has long remained questionable. Although plant-related factors should be well considered in serious pharmacognostic research, they are often not addressed in many research papers. Here we highlight the challenges in reproducing antibacterial activities of plant extracts. Methods Plants with reported antibacterial activities of interest were obtained from a literature review. Antibacterial activities against Escherichia coli and Klebsiella pneumoniae were tested using extracts' solutions in 10\% DMSO and acetone. Compositions of working solutions from both solvents were established using LC-MS analysis. Moreover, the availability of details likely to affect reproducibility was evaluated in articles which reported antibacterial activities of studied plants. Results Inhibition of bacterial growth at MIC of 256-1024 μg/mL was observed in only 15.4\% of identical plant species. These values were 4-16-fold higher than those reported earlier. Further, 18.2\% of related plant species had MICs of 128-256 μg/mL. Besides, 29.2\% and 95.8\% of the extracts were soluble to sparingly soluble in 10\% DMSO and acetone, respectively. Extracts' solutions in both solvents showed similar qualitative compositions, with differing quantities of corresponding phytochemicals. Details regarding seasons and growth state at collection were missing in 65\% and 95\% of evaluated articles, respectively. Likewise, solvents used to dissolve the extracts were lacking in 30\% of the articles, whereas 40\% of them used unidentified bacterial isolates. Conclusion Reproducibility of previously reported activities from plants' extracts is a multi-factorial aspect. Thus, collective approaches are necessary in addressing the highlighted challenges.}, language = {en} } @article{WallaschekReuterSilkenatetal.2021, author = {Wallaschek, Nina and Reuter, Saskia and Silkenat, Sabrina and Wolf, Katharina and Niklas, Carolin and {\"O}zge, Kayisoglu and Aguilar, Carmen and Wiegering, Armin and Germer, Christoph-Thomas and Kircher, Stefan and Rosenwald, Andreas and Shannon-Lowe, Claire and Bartfeld, Sina}, title = {Ephrin receptor A2, the epithelial receptor for Epstein-Barr virus entry, is not available for efficient infection in human gastric organoids}, series = {PLoS Pathogens}, volume = {17}, journal = {PLoS Pathogens}, number = {2}, doi = {10.1371/journal.ppat.1009210}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259206}, pages = {e1009210}, year = {2021}, abstract = {Epstein-Barr virus (EBV) is best known for infection of B cells, in which it usually establishes an asymptomatic lifelong infection, but is also associated with the development of multiple B cell lymphomas. EBV also infects epithelial cells and is associated with all cases of undifferentiated nasopharyngeal carcinoma (NPC). EBV is etiologically linked with at least 8\% of gastric cancer (EBVaGC) that comprises a genetically and epigenetically distinct subset of GC. Although we have a very good understanding of B cell entry and lymphomagenesis, the sequence of events leading to EBVaGC remains poorly understood. Recently, ephrin receptor A2 (EPHA2) was proposed as the epithelial cell receptor on human cancer cell lines. Although we confirm some of these results, we demonstrate that EBV does not infect healthy adult stem cell-derived gastric organoids. In matched pairs of normal and cancer-derived organoids from the same patient, EBV only reproducibly infected the cancer organoids. While there was no clear pattern of differential expression between normal and cancer organoids for EPHA2 at the RNA and protein level, the subcellular location of the protein differed markedly. Confocal microscopy showed EPHA2 localization at the cell-cell junctions in primary cells, but not in cancer cell lines. Furthermore, histologic analysis of patient tissue revealed the absence of EBV in healthy epithelium and presence of EBV in epithelial cells from inflamed tissue. These data suggest that the EPHA2 receptor is not accessible to EBV on healthy gastric epithelial cells with intact cell-cell contacts, but either this or another, yet to be identified receptor may become accessible following cellular changes induced by inflammation or transformation, rendering changes in the cellular architecture an essential prerequisite to EBV infection.}, language = {en} } @article{CorreiaSantosBischlerWestermannetal.2021, author = {Correia Santos, Sara and Bischler, Thorsten and Westermann, Alexander J. and Vogel, J{\"o}rg}, title = {MAPS integrates regulation of actin-targeting effector SteC into the virulence control network of Salmonella small RNA PinT}, series = {Cell Reports}, volume = {34}, journal = {Cell Reports}, number = {5}, doi = {10.1016/j.celrep.2021.108722}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259134}, pages = {108722}, year = {2021}, abstract = {A full understanding of the contribution of small RNAs (sRNAs) to bacterial virulence demands knowledge of their target suites under infection-relevant conditions. Here, we take an integrative approach to capturing targets of the Hfq-associated sRNA PinT, a known post-transcriptional timer of the two major virulence programs of Salmonella enterica. Using MS2 affinity purification and RNA sequencing (MAPS), we identify PinT ligands in bacteria under in vitro conditions mimicking specific stages of the infection cycle and in bacteria growing inside macrophages. This reveals PinT-mediated translational inhibition of the secreted effector kinase SteC, which had gone unnoticed in previous target searches. Using genetic, biochemical, and microscopic assays, we provide evidence for PinT-mediated repression of steC mRNA, eventually delaying actin rearrangements in infected host cells. Our findings support the role of PinT as a central post-transcriptional regulator in Salmonella virulence and illustrate the need for complementary methods to reveal the full target suites of sRNAs.}, language = {en} }