@phdthesis{Zude2014, author = {Zude, Ingmar}, title = {Characterization of virulence-associated traits of Escherichia coli bovine mastitis isolates}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-100934}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Bacterial mastitis is caused by invasion of the udder, bacterial multiplication and induction of inflammatory responses in the bovine mammary gland. Disease severity and the cause of disease are influenced by environmental factors, the cow's immune response as well as bacterial traits. Escherichia coli (E. coli) is one of the main causes of acute bovine mastitis, but although pathogenic E. coli strains can be classified into different pathotypes, E. coli causing mastitis cannot unambiguously be distinguished from commensal E. coli nor has a common set of virulence factors been described for mastitis isolates. This project focussed on the characterization of virulence- associated traits of E. coli mastitis isolates in comprehensive analyses under conditions either mimicking initial pathogenesis or conditions that E. coli mastitis isolates should encounter while entering the udder. Virulence-associated traits as well as fitness traits of selected bovine mastitis or faecal E. coli strains were identified and analyzed in comparative phenotypic assays. Raw milk whey was introduced to test bacterial fitness in native mammary secretion known to confer antimicrobial effects. Accordingly, E. coli isolates from bovine faeces represented a heterogeneous group of which some isolates showed reduced ability to survive in milk whey whereas others phenotypically resembled mastitis isolates that represented a homogeneous group in that they showed similar survival and growth characteristics in milk whey. In contrast, mastitis isolates did not exhibit such a uniform phenotype when challenged with iron shortage, lactose as sole carbon source and lingual antimicrobial peptide (LAP) as a main defensin of milk. Reduced bacterial fitness could be related to LAP suggesting that bacterial adaptation to an intramammary lifestyle requires resistance to host defensins present in mammary secretions, at least LAP. E. coli strain 1303 and ECC-1470 lack particular virulence genes associated to mastitis isolates. To find out whether differences in gene expression may contribute to the ability of E. coli variants to cause mastitis, the transcriptome of E. coli model mastitis isolates 1303 and ECC-1470 were analyzed to identify candidate genes involved in bacterium-host interaction, fitness or even pathogenicity during bovine mastitis. DNA microarray analysis was employed to assess the transcriptional response of E. coli 1303 and ECC-1470 upon cocultivation with MAC-T immortalized bovine mammary gland epithelial cells to identify candidate genes involved in bacterium-host interaction. Additionally, the cell adhesion and invasion ability of E. coli strain 1303 and ECC-1470 was investigated. The transcriptonal response to the presence of host cells rather suggested competition for nutrients and oxygen between E. coli and MAC-T cells than marked signs of adhesion and invasion. Accordingly, mostly fitness traits that may also contribute to efficient colonization of the E. coli primary habitat, the gut, have been utilized by the mastitis isolates under these conditions. In this study, RNA-Seq was employed to assess the bacterial transcriptional response to milk whey. According to our transcriptome data, the lack of positively deregulated and also of true virulence-associated determinants in both of the mastitis isolates indicated that E. coli might have adapted by other means to the udder (or at least mammary secretion) as an inflammatory site. We identified traits that promote bacterial growth and survival in milk whey. The ability to utilize citrate promotes fitness and survival of E. coli that are thriving in mammary secretions. According to our results, lactoferrin has only weak impact on E. coli in mammary secretions. At the same time bacterial determinants involved in iron assimilation were negatively regulated, suggesting that, at least during the first hours, iron assimilation is not a challenge to E. coli colonizing the mammary gland. It has been hypothesized that cellular iron stores cause temporary independency to extracellular accessible iron. According to our transcriptome data, this hypothesis was supported and places iron uptake systems beyond the speculative importance that has been suggested before, at least during early phases of infection. It has also been shown that the ability to resist extracytoplasmic stress, by oxidative conditions as well as host defensins, is of substantial importance for bacterial survival in mammary secretions. In summary, the presented thesis addresses important aspects of host-pathogen interaction and bacterial conversion to hostile conditions during colonization of the mastitis inflammatory site, the mammary gland.}, subject = {Escherichia coli}, language = {en} } @phdthesis{Kumari2014, author = {Kumari, Geeta}, title = {Molecular Characterization of the Induction of Cell Cycle Inhibitor p21 in Response to Inhibition of the Mitotic Kinase Aurora B}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-101327}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Aurora B ist eine mitotische Kinase, die entscheidende Funktionen in der Zellteilung aus{\"u}bt. Aurora B ist außerdem in einer Vielzahl von Krebsarten mutiert oder {\"u}berexprimiert. Daher ist die Aurora B Kinase ein attraktives Ziel f{\"u}r die Tumortherapie. Gegenw{\"a}rtig werden Aurora B-Inhibitoren zur Behandlung von soliden Tumoren und Leuk{\"a}mien in verschiedenen klinischen Studien getestet. Es fehlen jedoch Informationen, welche molekularen Mechanismen den beschriebenen Ph{\"a}notypen wie Zellzyklusarrest, Aktivierung des Tumorsuppressors p53 und seines Zielgens p21 nach Aurora B-Hemmung zugrunde liegen. Hauptziel dieser Arbeit war es die Mechanismen der p21-Induktion nach Hemmung von Aurora B zu untersuchen. Es konnte gezeigt werden, dass nach Hemmung von Aurora B die p38 MAPK phosphoryliert und somit aktiviert wird. Experimente mit p38-Inhbitoren belegen, dass p38 f{\"u}r die Induktion von p21 und den Zellzyklusarrest ben{\"o}tigt wird. Die Stabilisierung von p53 nach Aurora B-Inhibition und die Rekrutierung von p53 an den p21-Genpromotor erfolgen jedoch unabh{\"a}ngig vom p38-Signalweg. Stattdessen ist p38 f{\"u}r die Anreicherung der elongierenden RNA-Polymerase II in der kodierenden Region des p21-Gens und f{\"u}r die Bildung des p21 mRNA Transkripts notwendig. Diese Daten zeigen, dass p38 transkriptionelle Elongation des p21-Gens nach Aurora B Hemmung f{\"o}rdert. In weiteren Untersuchungen konnte ich zeigen, dass die Aurora B-Hemmung zu einer Dephosphorylierung des Retinoblastoma-Proteins f{\"u}hrt und dadurch eine Abnahme der E2F-abh{\"a}ngigen Transkription bewirkt. Dies l{\"o}st indirekt einen Zellzyklusarrest aus. Weiterhin konnte mit Hilfe von synchronisierten Zellen gezeigt werden, dass p21 nach Durchlaufen einer abnormalen Mitose induziert wird, jedoch nicht nach Aurora B-Hemmung in der Interphase. Interessanterweise werden p38, p53 und p21 schon bei partieller Inhibition von Aurora B aktiviert. Die partielle Inhibition von Aurora B f{\"u}hrt zu chromosomaler Instabilit{\"a}t aber nicht zum Versagen der Zytokinese und zur Bildung polyploider Zellen. Damit korreliert die Aktivierung des p38-p53-p21-Signalweges nicht mit Tetraploidie sondern mit vermehrter Aneuploidie. Die partielle Hemmung von Aurora B f{\"u}hrt außerdem zur vermehrten Entstehung von reaktive Sauerstoffspezies (ROS), welche f{\"u}r die Aktivierung von p38, p21 und f{\"u}r den Zellzyklusarrest ben{\"o}tigt werden. Basierend auf diesen Beobachtungen kann folgendes Modell postuliert werden: Die Hemmung von Aurora B f{\"u}hrt zu Fehlern in der Chromosomenverteilung in der Mitose und damit zu Aneuploidie. Dies f{\"u}hrt zu vermehrter Produktion von ROS, m{\"o}glicherweise durch proteotoxischer Stress, hervorgerufen durch die Imbalanz der Proteinbiosynthese in aneuploiden Zellen. ROS bewirkt eine Aktivierung der p38 MAPK und tr{\"a}gt damit zur Induktion von p21 und dem resultierenden Zellzyklusarrest bei. Aneuploidie, proteotoxischer und oxidativer Stress stellen Schl{\"u}sselmerkmale von Tumorkrankungen dar. Anhand der Ergebnisse dieser Arbeit k{\"o}nnte die Kombination von Aurora B-Hemmstoffen mit Medikamenten, die gezielt aneuploide Zellen angreifen, in Tumorerkrankungen therapeutisch wirksam sein.}, subject = {Zellzyklus}, language = {en} } @phdthesis{Ganesan2014, author = {Ganesan, Jayavarshni}, title = {The role of microRNA-378 in cardiac hypertrophy}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-100918}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {MicroRNAs are endogenous ≈22 nt long non coding RNA molecules that modulate gene expression at the post transcriptional level by targeting mRNAs for cleavage or translational repression. MicroRNA-mRNA interaction involves a contiguous and perfect pairing within complementary sites usually in the 3' UTR of the target mRNA. Heart failure is associated with myocyte hypertrophy and death, due to compensatory pathological remodeling and minimal functional repair along with microRNA deregulation. In this study, we identified candidate microRNAs based on their expression strength in cardiomyocytes and by their ability to regulate hypertrophy. Expression profiling from early and late stages of heart failure showed several deregulated microRNAs. Of these microRNAs, miR-378 emerged as a potentially interesting microRNA that was highly expressed in the mouse heart and downregulated in the failing heart. Antihypertrophic activity of miR-378 was first observed by screening a synthetic miR library for morphologic effects on cardiomyocytes, and validated in vitro proving the tight control of hypertrophy by this miR. We combined bioinformatic target prediction analysis and microarray analysis to identify the targets of miR-378. These analyses suggested that factors of the MAP kinase pathway were enriched among miR-378 targets, namely MAPK1 itself (also termed ERK2), the insulin-like growth factor receptor 1 (IGF1R), growth factor receptor bound protein 2 (GRB2) and kinase suppressor of ras 1 (KSR1). Regulation of these targets by miR-378 was then confirmed by mRNA and protein expression analysis. The use of luciferase reporter constructs with natural or mutated miR-378 binding sites further validated these four proteins as direct targets of miR-378. RNA interference with MAPK1 and the other three targets prevented the prohypertrophic effect of antimiR-378, suggesting that they functionally relate to miR-378. In vivo restoration of disease induced loss of miR-378 in a pressure overload mouse model of hypertrophy using adeno associated virus resulted in partial attenuation cardiac hypertrophy and significant improvement in cardiac function along with reduced expression of the four targets in heart. We conclude from these findings that miR-378 is an antihypertrophic microRNA in cardiomyocytes, and the main mechanism underlying this effect is the suppression of the MAP kinase-signaling pathway on four distinct levels. Restoration of disease-associated loss of miR-378 through cardiomyocyte-targeted AAV-miR-378 may prove as an effective therapeutic strategy in myocardial disease.}, subject = {Hypertrophie}, language = {en} } @phdthesis{Biehl2014, author = {Biehl, Stefanie}, title = {The Impact of Adult Attention Deficit/ Hyperactivity Disorder, Methylphenidate, and the COMT Val158Met Polymorphism on Selective Attention and Working Memory}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-100959}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Theories of attention deficit hyperactivity disorder (ADHD) aetiology have placed a focus on impaired behavioural inhibition presumably leading to executive function (EF) deficits. Neuroimaging studies report neurophysiological findings consistent with these hypothesised impairments, and investigations of functional brain activation from a network perspective report hypoactivation in the frontoparietal network as well as hyperactivation in the dorsal attention network. Studies investigating the acute effects of stimulant medication on EF show an improvement on behavioural EF measures including working memory. In addition, methylphenidate (MPH) was shown to up-regulate the task-positive/ frontoparietal network in children and adolescents with ADHD. So far, there are only few studies investigating the impact of ADHD on behavioural and neurophysiological EF measures as well as the effect of several weeks of stimulant medication in adult patients. The importance of the catechol-O-methyltransferase (COMT) enzyme for subcortical and cortical dopaminergic and noradrenergic functioning furthermore led to studies investigating a potential interactive impact of COMT genotype and ADHD on neuropsychological functioning, with a particular focus on working memory. The results of these studies were very heterogeneous. In addition, as none of the studies compared the results of ADHD patients to those of a healthy control group, possible differential effects of COMT in patients and healthy controls could not be examined. The aim of this dissertation was to investigate selective attention properties of the central executive component during a working memory task and to transfer this task to fMRI. A third study then aimed to investigate the effects of adult ADHD (aADHD), MPH, and COMT genotype on working memory with a particular focus on activation of the task-positive network during the analysis of the fMRI data. The first study (EEG) could replicate and extend the results from previous research. This study could furthermore connect the overall activation in frontal areas to suppression efficiency in posterior visual areas as well as establish the impact of hyperactive/ impulsive ADHD symptoms on task performance. The second study (fMRI) allowed the successful transfer of the paradigm to fMRI, and the further replication and extension of previous findings. In addition, this study showed the sensitivity of the task to the effects of the COMT genotype. The third study (fMRI) was one of the first studies that exploratorily investigated the effects COMT in a sample of aADHD patients and a comparable healthy control group. This study showed an interactive effect of these two factors on neuropsychological measures as well as on fMRI activation during a classic n-back working memory task. In addition, this task led to more activation in the task-positive network of the aADHD group compared to a healthy control group in the absence of performance differences, pointing towards compensatory activation in the aADHD group. Furthermore, activation in the frontal cortex was increased in patients taking MPH compared to a placebo. The fMRI data from the selective attention task moreover showed decreased activation in the right DLPFC of the patient group, which was associated with reduced suppression efficiency across all participants. The clinical effect of MPH in the third study was visible but did not reach significance, which is probably attributable to a lack of experimental power. The studies in this dissertation could successfully replicate and extend previous findings. A goal for future studies should be the further investigation of the interactive effects of COMT genotype and aADHD on neuropsychological test results and fMRI activation, but also on medication response and adverse effects. In this context, the adaptation of a network perspective during the analysis of fMRI data seems to be the best way to detect existing between-group differences.}, subject = {Aufmerksamkeits-Defizit-Syndrom}, language = {en} } @phdthesis{Merker2014, author = {Merker, S{\"o}ren}, title = {Genome-wide screenings in attention-deficit/hyperactivity disorder (ADHD): investigation of novel candidate genes SLC2A3 and LPHN3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-100129}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Attention-deficit/hyperactivity disorder (ADHD) is a highly prevalent childhood-onset neurodevelopmental disorder that involves a substantial risk of persisting into adolescence and adulthood. A number of genome-wide screening studies in ADHD have been conducted in recent years, giving rise to the discovery of several variants at distinct chromosomal loci, thus emphasising the genetically complex and polygenic nature of this disorder. Accordingly, promising novel candidate genes have emerged, such as the gene encoding the glucose transporter isoform 3 (SLC2A3) and the gene encoding the latrophilin isoform 3 (LPHN3). In this thesis, both genes were investigated in form of two separated projects. The first focused on SLC2A3 polymorphisms associated with ADHD and their potential physiological impact. For this purpose, gene expression analyses in peripheral cell models were performed as well as functional EEG measurements in humans. The second project concerned the murine gene Lphn3 including the goal of developing a mouse line containing a genetically modified Lphn3 with conditional knockout potential. In this respect, a specific DNA vector was applied to target the Lphn3 gene locus in murine embryonic stem (ES) cells as a prerequisite for the generation of appropriate chimeric mice. The results of the first project showed that SLC2A3 duplication carriers displayed increased SLC2A3 mRNA expression in peripheral blood cells and significantly altered event-related potentials (ERPs) during tests of cognitive response control and working memory, possibly involving changes in prefrontal brain activity and memory processing. Interestingly, ADHD patients with the rs12842 T-allele, located within and tagging the SLC2A3 gene, also exhibited remarkable effects during these EEG measurements. However, such effects reflected a reversed pattern to the aforementioned SLC2A3 duplication carriers with ADHD, thus indicative of an opposed molecular mechanism. Besides, it emerged that the impact of the aforementioned SLC2A3 variants on different EEG parameters was generally much more pronounced in the group of ADHD patients than the healthy control group, implying a considerable interaction effect. Concerning the second project, preliminary results were gathered including the successful targeting of Lphn3 in murine ES cells as well as the production of highly chimeric, phenotypically unremarkable and mostly fertile mouse chimeras. While germline transmission of the modified Lphn3 allele has not yet occurred, there are still several newborn chimeric mice that will be tested in the near future. In conclusion, the findings suggest that SLC2A3 variants associated with ADHD are accompanied by transcriptional and functional changes in humans. Future research will help to elucidate the molecular network and neurobiological basis involved in these effects and apparently contributing to the complex clinical picture of ADHD. Moreover, given the increasing number of publications concerning latrophilins in recent years and the multitude of research opportunities provided by a conditional knockout of Lphn3 in mice, the establishment of a respective mouse line, which currently is in progress, constitutes a promising approach for the investigation of this gene and its role in ADHD.}, subject = {Genexpression}, language = {en} } @phdthesis{ElMesery2014, author = {El-Mesery, Mohamed}, title = {Development of CD40-targeted bifunctional scFv-TRAIL fusion proteins that induce TRAILR1- and TRAILR2-specifc cell death and dendritic cells activation}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-100114}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {TRAIL is a member of TNF superfamily and mediates apoptosis by binding to two DRs, TRAILR1 and TRAILR2. Despite the fact that there are other TRAILRs, TRAILR1 and TRAILR2 receive the major research interest due to their ability to trigger apoptosis and their possible use as targets in tumor therapy. Due to the potential advantages of TRAILR1- or TRAILR2-specific targeting, we investigated recently published TRAIL DR-specific mutants, one conferring specificity for TRAILR1 (TRAILmutR1) and one for TRAILR2 (TRAILmutR2). It was well proved in this work that TRAILmutR1 shows specific binding to TRAILR1 and no specific binding to TRAILR2. TRAILmutR2 vice versa shows specific binding to TRAILR2 and no significant binding to TRAILR1. Moreover, these mutants were able to induce caspase activation and cell death in a TRAILR1/2-specific manner. Moreover, the enhancement of TRAILR2-induced apoptosis by secondary oligomerization of soluble wild-type TRAIL was confirmed for the TRAILR2-specifc TRAIL mutant and similar findings were made with the TRAILR1-specific TRAIL mutant. The soluble form of TRAIL exhibits weak apoptotic activity as compared to transmembrane TRAIL. Therefore, there is the challenge in clinical research to improve the activity of soluble TRAIL. A second strategy besides the above mentioned oligomerization to improve soluble TRAIL activity is anchoring of the molecule to the cell surface, e.g. through the genetic fusion with a scFv domain recognizing a cell surface antigen. In this work, we generated fusion proteins of TRAIL, TRAILmutR1 and TRAILmutR2 with a scFv recognizing CD40 (scFv:G28). Initially, we analyzed the functionality of both the TRAIL domain and the scFv:G28 domain of the corresponding fusion proteins. TRAIL functionality was well proved through its ability to induce cell death in TRAIL sensitive cells such as Jurkat cells, provided that scFv:G28-TRAIL fusion proteins were oligomerized by anti-Flag mAb M2. Concerning the scFv:G28 domain, the fusion proteins showed enhanced binding affinity to cell lines expressing CD40 as compared to their parental CD40-negative cells. Consistent with previous studies investigating TRAIL fusion proteins with other cell surface antigen-targeting scFvs, the scFv:G28 fusion proteins with TRAIL, TRAILmutR1 and TRAILmutR2 showed enhanced induction of cell death in a CD40-dependent manner. Moreover, our results revealed that these fusion proteins have a significant paracrine apoptotic effect on CD40-negative bystander cells upon anchoring to CD40-positive cells which are TRAIL resistant. Thus, the current work provides for the first time scFv fusion proteins of TRAIL and TRAILR1- and TRAILR2-specific TRAIL mutants with CD40-restricted activity. These fusion proteins provide the advantage of attenuating the off-target effects and the potential side effects of per se highly active TRAIL variants on one hand due to the CD40-binding dependent enhancement of activity and on the other hand due to the differential use of TRAILR1 and TRAILR2. CD40 represents a tumor associated marker which is expressed on many tumor cells but also on immune cells. Therefore, the last part of this work focused on the analysis of the ability of scFv:G28-TRAIL fusion proteins to induce CD40 signaling both in tumor cells and also in immune cells. It turned out that the scFv:G28-TRAIL fusion proteins are able to induce CD40 signaling in CD40-positive tumor cells but especially also in immune cells such as iDCs leading to their maturation and further activation of immune responses. Taken together, this work provides novel bifunctional scFv-TRAIL fusion proteins which combine the induction of apoptosis via TRAIL DR with stimulation of CD40 signaling which possibly enhances antitumor immunity.}, subject = {Tumor-Nekrose-Faktor}, language = {en} } @phdthesis{Karunakaran2014, author = {Karunakaran, Mohindar Murugesh}, title = {Evolution of Vγ9Vδ2 T-cells}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-99871}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Human Vγ9Vδ2 T cells are the major subset of blood γδ T cells and account for 1-5\% of blood T cells. Pyrophosphorylated metabolites of isoprenoid biosynthesis are recognized by human Vγ9Vδ2 T cells and are called as phosphoantigens (PAg). Isopentenyl pyrophosphate (IPP) and (E)-4-Hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP) are among the few well studied PAg. IPP is found in all organisms while HMBPP is a precursor of IPP found only in eubacteria, plants and apicomplexaen parasite. Interestingly, the PAg reactive Vγ9Vδ2 T cells are so far identified only in human and higher primates but not in rodents. Hence, Vγ9Vδ2 T cells are believed to be restricted to primates. With regard to PAg recognition, a Vγ9JP recombined TCRγ chain and certain CDR3 motifs of the TCR chain are mandatory. The BTN3A1 molecule is essential for a response to PAg. BTN3 is a trans-membrane protein belonging to butyrophilin family of proteins. Though BTN3A1 was found to be essential for PAg presentation, the exact molecular basis of PAg presentation still remains unclear. This thesis presents new data on the evolution of Vγ9Vδ2 TCR and its ligands (BTN3) as well as the genetic basis of PAg presentation to Vγ9Vδ2 TCR. The comprehensive analysis of genomic database sequences at NCBI and other public domain databases revealed for the first time that Vγ9, Vδ2 and BTN3 genes emerged and co-evolved along with the placental mammals. Vγ9, Vδ2 and BTN3 genes are scattered across mammalian species and not restricted to primates. But interestingly, all three genes are highly conserved between phylogenetically distinct species. Moreover, the distribution pattern of Vγ9, Vδ2 TCR genes and BTN3 genes suggests a functional association between these genes representing the TCR - ligand relationship. Alpaca (Vicugna pacos), a member of the camelid family, is one among the 6 candidate non-primate species which were found to possess functional Vγ9, Vδ2 and BTN3 genes. From peripheral lymphocytes of alpaca, Vγ9 chain transcripts with a characteristic JP rearrangement and transcripts of Vδ2 chains with a CDR3 typical for PAg-reactive TCR were identified. The transduction of αβ TCR negative mouse thymoma BW cells with alpaca Vγ9 and Vδ2 TCR chains resulted in surface expression of the TCR complex as it was deduced from detection of cell surface expression of mouse CD3. Cross-linking of alpaca Vγ9Vδ2 TCR transductants with anti-CD3ε led to IL-2 production which confirmed that alpaca Vγ9 and Vδ2 TCR chains pair to form a functional TCR. Besides the conservation of human like Vγ9 and Vδ2 TCR chains, alpaca has conserved an orthologue for human BTN33A1 as well. Interestingly, the predicted PAg binding sites of human BTN3A1 was 100\% conserved in deduced amino acid sequence of alpaca BTN3A1. All together alpaca is a promising candidate for further studies as it might have preserved Vγ9Vδ2 T cells to function in surveillance of stress and infections. This thesis also provides the sequence of Vγ9Vδ2 TCR of African green monkey (Chlorocebus aethiops), which was previously unknown. Moreover, our data indicates the lack of any species specific barrier which could hinder the PAg presentation by African monkey derived COS cells to human Vγ9Vδ2 TCR and vice versa of human cells to African green monkey Vγ9Vδ2 TCR which was in contradiction to previously reported findings. Apart from the above, the thesis also presents new data on the genetic basis of PAg presentation to Vγ9Vδ2 T cells, which revealed that human chromosome 6 is sufficient for the presentation of exogenous and endogenous PAg. By employing human/mouse somatic hybrids, we identified the role of human chromosome 6 in PAg presentation and in addition, we observed the lack of capacity of human chromosome 6 positive hybrids to activate Vγ9Vδ2 TCR transductants in the presence of the alkylamine sec-butylamine (SBA). Investigation of Chinese hamster ovary (CHO) cells containing the human chromosome 6 also yielded similar results. This suggests that aminobisphosphonates (zoledronate) and alkylamines employ different mechanisms for activation of Vγ9Vδ2 T cells although both have been described to act by inhibition of farnesyl pyrophosphate synthase activity which is known to increase intracellular levels of the IPP. In conclusion, this thesis suggests that Vγ9, Vδ2 and BTN3 genes controlling Vγ9Vδ2 TCR- ligand relationship emerged and co-evolved along with placental mammals; and also identified candidate non-primate species which could possess Vγ9Vδ2 T cells. Furthermore, it suggests alpaca as a promising non-primate species to investigate the physiological function of Vγ9Vδ2 T cells. With respect to PAg antigen presentation it was shown that chromosome 6 is essential and sufficient for exogenous and endogenous PAg presentation. Moreover, the alkylamine SBA and aminobisphosphonate zoledronate may engage different cellular mechanism to exert inhibition over IPP consumption. The thesis raises interesting questions which need to be addressed in future: 1) What are the environmental and evolutionary factors involved in preservation of Vγ9Vδ2 T cells only by few species? 2) What could be the functional nature and antigen recognition properties of such a conserved T cell subset? 3) What is the genetic and molecular basis of the differential capacity of human chromosome 6 bearing rodent-human hybridoma cells in activating Vγ9Vδ2 T cells in presence of SBA and aminobisphosphonates?}, subject = {Evolution}, language = {en} } @phdthesis{Morowski2014, author = {Morowski, Martina}, title = {Relevance of platelet count and ITAM-signalling pathway in murine models of haemostasis, thrombosis and thrombo-inflammation}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-99193}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Platelets are important players in haemostasis and their activation is essential to limit post-traumatic blood loss upon vessel injury. On the other hand, pathological platelet activation may lead to thrombosis resulting in myocardial infarction and stroke. Platelet activation and subsequent thrombus formation are, therefore, tightly regulated and require a well-defined interplay of platelet surface receptors, intracellular signalling molecules, cytoskeletal rearrangements and the activation of the coagulation cascade. In vivo thrombosis and haemostasis models mimic thrombus formation at sites of vascular lesions and are frequently used to assess thrombotic and haemostatic functions of platelets. In this dissertation, different in vivo models were used in mice to address the question at what level a reduced platelet count (PC) compromises stable thrombus formation. To study this, mice were rendered thrombocytopenic by low-dose anti-GPIbα antibody treatment and subjected to a tail bleeding time assay as well as to four different in vivo thrombosis models. Haemostasis and occlusive thrombus formation in small vessels were only mildly affected even at severe reductions of the PC. In contrast, occlusive thrombus formation in larger arteries required higher PCs demonstrating that considerable differences in the sensitivity for PC reductions exist between these models. In a second part of this study, mice were rendered thrombocytopenic by injection of high-dose anti-GPIbα antibody which led to the complete loss of all platelets from the circulation for several days. During recovery from thrombocytopenia, the newly generated platelet population was characterised and revealed a defect in immunoreceptor tyrosine-based activation motif (ITAM)-signalling. This defect translated into impaired arterial thrombus formation. To further investigate ITAM-signalling in vivo, genetically modified mice were analysed which display a positive or negative regulation of platelet ITAM-signalling in vitro. Whereas mice lacking the adapter Grb2 in platelets showed a delayed thrombus formation in vivo after acetylsalicylic acid treatment, Clp36ΔLIM bone marrow chimeric mice and SLAP/SLAP2-deficient mice displayed pro-thrombotic properties in vivo. Finally, mice lacking the adapter protein EFhd2 were analysed in vitro and in vivo. However, EFhd2-deficient platelets showed only a minor increase in the procoagulant activity compared to control.}, subject = {Thrombozyt}, language = {en} } @phdthesis{Thielmann2014, author = {Thielmann, Ina}, title = {Function and regulation of phospholipase D in blood platelets: in vitro and in vivo studies in mice}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-99179}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Summary Platelet activation and aggregation are crucial for primary hemostasis but can also result in occlusive thrombus formation. Agonist induced platelet activation involves different signaling pathways leading to the activation of phospholipases (PL) which produce second messengers. While the role of PLCs in platelet activation is well established, less is known about the relevance of PLDs. In the current study, the function and regulation of PLD in platelets was investigated using genetic and pharmacological approaches. In the first part of this thesis, adhesion, activation and aggregation of platelets from mice lacking PLD2 or both PLD1 and PLD2 were analyzed in vitro and in vivo. While the absence of PLD2 resulted in slightly reduced PLD activity in platelets, it had no detectable effect on the platelet function in vitro and in vivo. However, the combined deficiency of both PLD isoforms resulted in defective alpha-granule release and protection in a model of ferric chloride induced arteriolar thrombosis, effects that were not observed in mice lacking only one PLD isoform. These results revealed, for the first time, redundant roles of PLD1 and PLD2 in platelet alpha-granule secretion and indicate that this may be relevant for pathological thrombus formation. Thus, PLD might represent a promising target for antithrombotic therapy. Thus, this hypothesis was tested more directly in the second part of this thesis. The effects of pharmacological inhibition of PLD activity on hemostasis, thrombosis and thrombo-inflammatory brain infarction in mice were assessed. Treatment of platelets with the reversible, small molecule PLD inhibitor 5-Fluoro-2-indolyl des-chlorohalopemide (FIPI) led to a specific blockade of PLD activity that was associated with reduced -granule release and integrin activation. Mice that received FIPI at a dose of 3 mg/kg displayed reduced occlusive thrombus formation upon chemical injury of carotid arteries or mesenterial arterioles. Similarly, FIPI-treated mice had smaller infarct sizes and significantly better motor and neurological function 24 hours after transient middle cerebral artery occlusion. This protective effect was not associated with major intracerebral hemorrhage or prolonged tail bleeding times. Thus, pharmacological PLD inhibition might represent a safe therapeutic strategy to prevent arterial thrombosis or ischemic stroke. After revealing a central role for PLD in thrombo-inflammation, the regulation of PLD activity in platelets was analyzed in the last part of the thesis. Up to date, most studies made use of inhibitors potentially exerting off-target effects and consequently PLD regulation is discussed controversially. Therefore, PLD activity in mice genetically lacking potential modulators of PLD activity was determined to address these controversies. These studies revealed that PLD is tightly regulated during initial platelet activation. While integrin outside-in signaling and Gi signaling was dispensable for PLD activation, it was found that PLC dependent pathways were relevant for the regulation of PLD enzyme activity.}, subject = {Phospholipase D}, language = {en} } @phdthesis{Wang2014, author = {Wang, Ying}, title = {Immune and peripheral endogenous opioid mechanisms of electroacupuncture analgesia}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-98326}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {A precious treasure in traditional Chinese medicine (TCM), acupuncture played a vital and irreplaceable role in contributing to people's health in the thousands of years of Chinese history, and in 2010 was officially added to the "Representative List of the Intangible Cultural Heritage of Humanity" by the United Nations. Because of the side-effects of long-term drug therapy for pain, and the risks of dependency, acupuncture has been widely accepted as one of the most important alternative choice therapies for treating varieties of acute and chronic pain-related disorders. The clinical application and scientific mechanism research of acupuncture have therefore increased intensively in the last few decades. Besides hand acupuncture, other treatment approaches e.g. electroacupuncture (EA) have been widely accepted and applied as an important acupuncture-related technique for acupuncture analgesia (AA) research. The involvement of opioid peptides and receptors in acute AA has been shown via pre-EA application of opioid receptor/peptide antagonists. However, existing publications still cannot illuminate the answer to the following question: how does sustained antinociception happen by EA treatment? The hypothesis of opioid peptide-mediated tonic AA might be able to answer the question. In the first part of this thesis, the institution of a reproducible acupuncture treatment model as well as the endogenous opioid-related mechanisms was demonstrated. An anatomically-based three-dimensional (3D) rat model was established to exhibit a digital true-to-life organism, accurate acupoint position and EA treatment protocol on bilateral acupoint GB-30 Huantiao. The optimal EA treatment protocol (100 Hz, 2-3 mA, 0.1 ms, 20 min) at 0 and 24 h after induction of inflammatory pain by complete Freund's adjuvant (CFA) on conscious free-moving rats was then established. EA elicited significant sustained mechanical and thermal antinociception up to 144 h. Post-EA application of opioid receptors (mu opioid receptor, MOR; delta opioid receptor, DOR) antagonists naloxone (NLX) and naltrindole (NTI), or opioid peptide antibodies anti-beta-endorphin (anti-END), met-enkephalin (anti-ENK) or -dynorphin A (anti-DYN) could also block this effect at a late phase (96 h) of CFA post-EA, which suggested opioid-dependent tonic analgesia was produced by EA. Meanwhile, EA also reduced paw temperature and volume at 72-144 h post CFA indicating anti-inflammatory effects. Nociceptive thresholds were assessed by paw pressure threshold (Randall-Sellito) or paw withdrawal latency (Hargreaves) and an anti-inflammatory effect was evaluated by measurement of plantar temperature and volume of inflamed paw. The second part of the thesis further suggests the correlation between the chemokine CXCL10 (= interferon-gamma inducible protein 10, IP-10) and opioid peptides in EA-induced antinociception. Based on a comprehensive Cytokine Array of 29 cytokines, targeted cytokines interleukin (IL)-1alpha, interleukin (IL)-1beta, tumor necrosis factor (TNF)-alpha, interleukin (IL)-4, interleukin (IL)-13, interferon (IFN)-gamma as well as CXCL10 were selected and quantified by enzyme-linked immunosorbent assay (ELISA), and real time reverse transcription-polymerase chain reaction (RT-PCR) quantification confirmed upregulation of CXCL10 mRNA at both 72 and 96 h. The following hyperalgesic assessment suggested the antinociceptive effect of CXCL10. The double immunostaining localizing opioid peptides with macrophages expressed the evident upregulation of CXCR3-receptor of CXCL10 in EA treated samples as well as the significant upregulation or downregulation of opioid peptides by repeated treatment of CXCL10 or antibody of CXCL10 via behavioral tests and immune staining. Subsequent immunoblotting measurements showed non-alteration of opioid receptor level by EA, indicating that the opioid receptors did not apparently contribute to AA in the present studies. In vitro, CXCL10 did not directly trigger opioid peptide END release from freshly isolated rat macrophages. This might implicate an indirect property of CXCL10 in vitro stimulating the opioid peptide-containing macrophages by requiring additional mediators in inflammatory tissue. In summary, this project intended to explore the peripheral opioid-dependent analgesic mechanisms of acupuncture with a novel 3D treatment rat model and put forward new information to support the pivot role of chemokine CXCL10 in mediating EA-induced tonic antinociception via peripheral opioid peptides.}, subject = {Elektroakupunktur}, language = {en} } @phdthesis{Kuehn2013, author = {K{\"u}hn, Andrea}, title = {The molecular interplay of proteins expressed in the sexual stages and the induction of gamete formation in the malaria parasite Plasmodium falciparum}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-98028}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Transmission of the malaria parasite from man to the mosquito requires the formation of sexual parasite stages, the gametocytes. The gametocytes are the only parasite stage that is able to survive in the mosquito midgut and to undergo further development - gamete formation and fertilization. Numerous sexual stage-specific proteins have been discovered, some of which play crucial roles for parasite transmission. However, the functions of many sexual stage proteins remain elusive. Amongst the sexual stage-specific proteins are the proteins of the PfCCp proteins family, which exhibit numerous adhesion domains in their protein structures. For four members of the protein family, PfCCp1 to PfCCp4 gene-disruptant parasite lines had been already studied. Amongst these, PfCCp2 and PfCCp3 showed an important role for development of the parasites in the mosquito. In the present work the study of gene-disrupted parasites of the PfCCp Protein family was completed. PfCCp5-KO and PfFNPA-KO parasite lines were characterized to a great extent and many properties were similar to those of other PfCCp proteins. The co-dependent expression previously reported to be a phenomenon of PfCCp proteins was also observed in these two mutants, although to lesser extent. When either PfCCp5 or PfFNPA were absent, all other proteins were detected in reduced abundance only. Co-dependent expression manifests exclusively on the protein level. Transcript levels were not altered as RT-PCR showed. Amongst PfCCp proteins numerous proteinproteins interactions are taking place. The previously described multimeric protein complexes also include further sexual stage-specific proteins like Pfs230, Pfs48/45 and Pfs25. Recently, a new component of PfCCp-based multimeric protein complexes had been identified. The protein was named PfWLP1 (WD repeat protein-like protein 1) due to its possession of several WD40 repeats. In the present study expression of this uncharacterized protein was investigated via indirect IFA. It was expressed in asexual blood stages and gametocytes. Upon gamete formation and fertilization its expression ceased. Another sexual stage protein studied in this work was PfactinII. It was shown to be exclusively expressed in sexual stages. In gametocytes it co-localizes with Pfs230 and correct localization of PfactinII depends on presence of Pfs230. Transcript analysis by means of RT-PCR revealed the expression of several components of the IMC in gametocytes. Furthermore, five or six myosin genes encoded in the P. falciparum genome were detected in gametocytes. Gametocyte egress was studied on the ultrastructural level via transmission electron microscopy and an inside-out type of egress was observed. Firstly, the membrane of the parasitophorous vacuole (PVM) was lysed and only thereafter the membrane of the red blood cell (RBCM) ruptured. Furthermore, a new inductor of gametogenesis was identified: The K+/H+ ionophore nigericin induced gametocytes activation in the absence of xanthurenic acid (XA), which is responsible for gamtetocyte activation in the mosquito midgut. Selective permeabilization of RBCM and PVM by the mild detergent saponin, showed that in the absence of these membranes male gametocytes were still able to perceive both XA and the drop in temperature. Thus, the receptors for both factors signaling the parasite transmission to the mosquito, seem to be of parasitic origin. LC/MS/MS analysis confirmed the ability of RBCs to take up XA. With malaria eradication on the agenda of malaria research targeting the sexual stages becomes a crucial part of intervention strategies. The sexual stages are especially attractive target as they represent a population bottleneck. The here reported findings on P. falciparum gametocytes provide several potential candidate proteins for developing tools to interrupt transmission from man to mosquito. Such tools might include Transmission blocking vaccines and drugs.}, subject = {Malaria}, language = {en} } @phdthesis{Foerster2012, author = {F{\"o}rster, Sabine}, title = {Nuclear Hormone Receptors and Fibroblast Growth Factor Receptor Signaling in Echinococcus multilocularis}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-85832}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Parasitic helminths share a large degree of common genetic heritage with their various hosts. This includes cell-cell-communication mechanisms mediated by small peptide cytokines and lipophilic/steroid hormones. These cytokines are candidate molecules for host-parasite cross-communication in helminth diseases. In this work the function of two evolutionary conserved signaling pathways in the model cestode Echinococcus multilocularis has been studied. First, signaling mechanisms mediated through fibroblast growth factors (FGF) and their cognate receptors (FGFR) which influence a multitude of biological functions, like homeostasis and differentiation, were studied. I herein investigated the role of EmFR which is the only FGFR homolog in E. multilocularis. Functional analyses using the Xenopus oocyte expression system clearly indicate that EmFR can sense both acidic and basic FGF of human origin, resulting in an activation of the EmFR tyrosine kinase domain. In vitro experiments demonstrate that mammalian FGF significantly stimulates proliferation and development of E. multilocularis metacestode vesicles and primary cells. Furthermore, DNA synthesis and the parasite's Erk-like MAPK cascade module was stimulated in the presence of exogenously added mammalian FGF. By using the FGFR inhibitor BIBF1120 the activity of EmFR in the Xenopus oocyte system was effectively blocked. Addition of BIBF1120 to in vitro cultivated Echinococcus larval material led to detrimental effects concerning the generation of metacestode vesicles from parasite stem cells, the proliferation and survival of metacestode vesicles, and the dedifferentiation of protoscoleces towards the metacestode. In conclusion, these data demonstrate the presence of a functional EmFR-mediated signaling pathway in E. multilocularis that is able to interact with host-derived cytokines and that plays an important role in larval parasite development. Secondly, the role of nuclear hormone receptor (NHR) signaling was addressed. Lipophilic and steroid hormone signaling contributes to the regulation of metazoan development. By means of in silico analyses I demonstrate that E. multilocularis expresses a set of 17 NHRs that broadly overlaps with that of the related flatworms Schistosoma mansoni and S. japonicum, but also contains several NHR encoding genes that are unique to this parasite. One of these, EmNHR1, is homolog to the DAF-12/HR-96 subfamily of NHRs which regulate cholesterol homeostasis in metazoans. Modified yeast-two hybrid analyses revealed that host serum contains a ligand which induces homodimerization of the EmNHR1 ligand-binding domain. Also, a HNF4-like homolog, EmHNF4, was characterized. Human HNF4 plays an important role in liver development. RT-PCR experiments showed that both isoforms of the EmHNF4 encoding gene are expressed stage-dependently suggesting distinct functions of the two isoforms in the parasite. Moreover, specific regulatory mechanisms on the convergence of NHR signaling and TGF-β/BMP signaling pathways in E. multilocularis have been identified. On the one hand, EmNHR1 directly interacted with the EmSmadC and on the other hand EmHNF4b interacted with EmSmadD, EmSmadE which are all downstream signaling components of the TGF-β/BMP signaling pathway. This suggests cross-communication in order to regulate target gene expression. With these results, further studies on the role of NHR signaling in the cestode will be facilitated. Also, the first serum-free in vitro cultivation system for E. multilocularis was established using PanserinTM401 as medium. Serum-free co-cultivation with RH-feeder cells and an axenic cultivation method have been established. With the help of this serum-free cultivation system investigations on the role of specific peptide hormones, like FGFs, or lipophilic/steroid hormones, like cholesterol, for the development of helminths will be much easier.}, subject = {Signaltransduktion}, language = {en} } @article{BaeuerleinRiedelBakeretal.2013, author = {B{\"a}uerlein, Carina A. and Riedel, Simone S. and Baker, Jeanette and Brede, Christian and Jord{\´a}n Garrote, Ana-Laura and Chopra, Martin and Ritz, Miriam and Beilhack, Georg F. and Schulz, Stephan and Zeiser, Robert and Schlegel, Paul G. and Einsele, Hermann and Negrin, Robert S. and Beilhack, Andreas}, title = {A diagnostic window for the treatment of acute graft-versus-host disease prior to visible clinical symptoms in a murine model}, series = {BMC Medicine}, journal = {BMC Medicine}, doi = {10.1186/1741-7015-11-134}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-96797}, year = {2013}, abstract = {Background Acute graft-versus-host disease (aGVHD) poses a major limitation for broader therapeutic application of allogeneic hematopoietic cell transplantation (allo-HCT). Early diagnosis of aGVHD remains difficult and is based on clinical symptoms and histopathological evaluation of tissue biopsies. Thus, current aGVHD diagnosis is limited to patients with established disease manifestation. Therefore, for improved disease prevention it is important to develop predictive assays to identify patients at risk of developing aGVHD. Here we address whether insights into the timing of the aGVHD initiation and effector phases could allow for the detection of migrating alloreactive T cells before clinical aGVHD onset to permit for efficient therapeutic intervention. Methods Murine major histocompatibility complex (MHC) mismatched and minor histocompatibility antigen (miHAg) mismatched allo-HCT models were employed to assess the spatiotemporal distribution of donor T cells with flow cytometry and in vivo bioluminescence imaging (BLI). Daily flow cytometry analysis of peripheral blood mononuclear cells allowed us to identify migrating alloreactive T cells based on homing receptor expression profiles. Results We identified a time period of 2 weeks of massive alloreactive donor T cell migration in the blood after miHAg mismatch allo-HCT before clinical aGVHD symptoms appeared. Alloreactive T cells upregulated α4β7 integrin and P-selectin ligand during this migration phase. Consequently, targeted preemptive treatment with rapamycin, starting at the earliest detection time of alloreactive donor T cells in the peripheral blood, prevented lethal aGVHD. Conclusions Based on this data we propose a critical time frame prior to the onset of aGVHD symptoms to identify alloreactive T cells in the peripheral blood for timely and effective therapeutic intervention.}, language = {en} } @phdthesis{Thakur2012, author = {Thakur, Chitra}, title = {Lineage tracing of metastasis in a mouse model for Non-small cell lung cancer (NSCLC)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-85420}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Non-small cell lung cancer (NSCLC) is the deadliest form of lung cancer and has a poor prognosis due to its high rate of metastasis. Notably, metastasis is one of the leading causes of death among cancer patients. Despite the clinical importance, the cellular and molecular mechanisms that govern the initiation, establishment and progression of metastasis remain unclear. Moreover, knowledge gained on metastatic process was largely based on cultured or in vitro manipulated cells that were reintroduced into immune-compromised recipient mice. In the present study, a spontaneous metastasis mouse model for NSCLC was generated with a heritable fluorescent tag (DsRed) driven by CAG (combination of cytomegalovirus early enhancing element and chicken beta actin) promoter in alveolar type II cells (SpC-rtTA/TetO-Cre/LSL-DsRed). This approach is essential, keeping in mind the reprogramming nature of Myc oncogene (Rapp et al, 2009). Such genetic lineage tracing approach not only allowed us to monitor molecular and cellular changes during development of primary tumor but also led us to identify the different stages of secondary tumor development in distant organs. Upon combined expression of oncogenic C Raf-BXB and c-Myc (MYC-BXB-DsRed) in lung alveolar type II epithelial cells, macroscopic lung tumors arose comprising of both cuboidal and columnal cellular features. C Raf-BXB induced tumors (CRAF-DsRed) exhibit cuboidal morphology and is non-metastatic whereas Myc-BXB induced lung tumors (Myc-BXB-DsRed) present cuboidal-columnar cellular features and is able to undergo metastasis mainly in liver. Surprisingly, cystic lesions which were negative for SpC (Surfactant protein C) and CCSP (Clara cell secretory protein), strongly expressed DsRed proteins indicating its origin from lung alveolar type II cells. Moreover, early lung progenitor markers such as GATA4 (GATA-binding protein 4) and TTF1 (Thyroid Transcription Factor 1) were still expressed in these early cystic lesions suggesting metastasis as a faulty recapitulation of ontogeny (Rapp et al, 2008). Interestingly, mixed cystic lesions and metastatic tumors contained DsRed and SpC positive cells. These results demonstrate secondary tumor progression from cystic, mixed cystic to malignant transformation. Our results shed tremendous light on reprogramming of metastasizing cells during secondary tumor development. Moreover, such fluorescent tagged metastatic mice model can also be used to track the migration ability of metastatic cancer cell to different organs and its potential to differentiate into other cell types such as blood vessel or stromal cell within the primary tumor.}, subject = {Lungenkrebs}, language = {en} } @phdthesis{BlancoRedondo2014, author = {Blanco Redondo, Beatriz}, title = {Studies of synapsin phosphorylation and characterization of monoclonal antibodies from the W{\"u}rzburg Hybridoma Library in Drosophila melanogaster}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-93766}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Synapsins are conserved synapse-associated hosphoproteins involved in the fine regulation of neurotransmitter release. The aim of the present project is to study the phosphorylation of synapsins and the distribution of phospho-synapsin in the brain of Drosophila melanogaster. Three antibodies served as important tools in this work, a monoclonal antibody (3C11/α-Syn) that recognizes all known synapsin isoforms and two antisera against phosphorylated synapsin peptides (antiserum PSyn(S6) against phospho-serine 6 and antiserum PSyn(S464) against phospho-serine 464). These antisera were recently generated in collaboration with Bertram Gerber and Eurogentec. ...}, subject = {Synapsine}, language = {en} } @phdthesis{Tupak2013, author = {Tupak, Sara}, title = {Modulators of Prefrontal Fear Network Function: An Integrative View}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-85673}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Regulating our immediate feelings, needs, and urges is a task that we are faced with every day in our lives. The effective regulation of our emotions enables us to adapt to society, to deal with our environment, and to achieve long-term goals. Deficient emotion regulation, in contrast, is a common characteristic of many psychiatric and neurological conditions. Particularly anxiety disorders and subclinical states of increased anxiety are characterized by a range of behavioral, autonomic, and neural alterations impeding the efficient down-regulation of acute fear. Established fear network models propose a downstream prefrontal-amygdala circuit for the control of fear reactions but recent research has shown that there are a range of factors acting on this network. The specific prefrontal cortical networks involved in effective regulation and potential mediators and modulators are still a subject of ongoing research in both the animal and human model. The present research focused on the particular role of different prefrontal cortical regions during the processing of fear-relevant stimuli in healthy subjects. It is based on four studies, three of them investigating a different potential modulator of prefrontal top-down function and one directly challenging prefrontal regulatory processes. Summarizing the results of all four studies, it was shown that prefrontal functioning is linked to individual differences in state anxiety, autonomic flexibility, and genetic predisposition. The T risk allele of the neuropeptide S receptor gene, a recently suggested candidate gene for pathologically elevated anxiety, for instance, was associated with decreased prefrontal cortex activation to particularly fear-relevant stimuli. Furthermore, the way of processing has been found to crucially determine if regulatory processes are engaged at all and it was shown that anxious individuals display generally reduced prefrontal activation but may engage in regulatory processes earlier than non-anxious subjects. However, active manipulation of prefrontal functioning in healthy subjects did not lead to the typical behavioral and neural patterns observed in anxiety disorder patients suggesting that other subcortical or prefrontal structures can compensate for an activation loss in one specific region. Taken together, the current studies support prevailing theories of the central role of the prefrontal cortex for regulatory processes in response to fear-eliciting stimuli but point out that there are a range of both individual differences and peculiarities in experimental design that impact on or may even mask potential effects in neuroimaging research on fear regulation.}, subject = {Neurogenetik}, language = {en} } @phdthesis{Fronhofer2013, author = {Fronhofer, Emanuel Alexis}, title = {Beyond classical metapopulations: trade-offs and information use in dispersal ecology}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-85816}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {All animal and plant species must disperse in order to survive. Although this fact may seem trivial, and the importance of the dispersal process is generally accepted, the eco-evolutionary forces influencing dispersal, and the underlying movement elements, are far from being comprehensively understood. Beginning in the 1950s scientists became aware of the central role of dispersal behaviour and landscape connectivity for population viability and species diversity. Subsequently, dispersal has mainly been studied in the context of metapopulations. This has allowed researchers to take into account the landscape level, e.g. for determining conservation measures. However, a majority of theses studies classically did not include dispersal evolution. Yet, it is well known that dispersal is subject to evolution and that this process may occur (very) rapidly, i.e. over short ecological time-scales. Studies that do take dispersal evolution into account, mostly focus on eco-evolutionary forces arising at the level of populations - intra-specific competition or Allee effects, for example - and at the level of landscapes - e.g. connectivity, patch area and fragmentation. Yet, relevant ecological and evolutionary forces can emerge at all levels of biological complexity, from genes and individuals to populations, communities and landscapes. Here, I focus on eco-evolutionary forces arising at the gene- and especially at the individual level. Combining individual-based modelling and empirical field work, I explicitly analyse the influence of mobility trade-offs and information use for dispersal decisions - i.e. individual level factors - during the three phases of dispersal - emigration, transfer and immigration. I additionally take into account gene level factors such as ploidy, sexual reproduction (recombination) and dominance. Mobility-fertility trade-offs may shape evolutionarily stable dispersal strategies and lead to the coexistence of two or more dispersal strategies, i.e. polymorphisms and polyphenisms. This holds true for both dispersal distances (chapter 3) and emigration rates (chapter 4). In sessile organisms - such as trees or corals - maternal investment, i.e. transgenerational trade-offs between maternal fertility and propagule dispersiveness, can be the cause of bimodal and fat-tailed dispersal kernels. However, the coexistence of two or more dispersal strategies may be critically dependent on gene level factors, such as ploidy or dominance (chapter 4). Passively dispersing individuals may realize such multimodal dispersal kernels by mixing different dispersal vectors. Active choice of these vectors allows to optimize the kernel. As most animals have evolved some kind of memory and sensory apparatus - chemical, acoustic or optical sensors - it is obvious that these capacities should be used for dispersal decisions. Chapter 5 explores the use of chemical cues for vector choice in passively dispersed animals. I find that the neotropical phoretic flower mites Spadiseius calyptrogynae non-randomly mix different dispersal vectors, i.e. one short- and one long-distance disperser, in order to achieve fat-tailed dispersal kernels. Such kernels allow an optimal exploitation of patchily distributed habitats. In addition, this strategy increases the probability of successful immigration as the short-distance dispersal vectors show directed dispersal towards suitable habitats. Results from individual-based simulations support and explain my empirical findings. The use of memory and sensory apparatus in dispersal is also the main topic of chapter 6 which strives to bridge the gap between dispersal and movement ecology. In this part of my thesis I develop a model of non-random, memory-based animal movement strategies. Extending the movement ecology paradigm of Nathan (2008a) I postulate that four elements may be relevant for the emergence of efficient movement strategies: perception, memory, inference and anticipation. Movement strategies including these four elements optimize search efficiency at two scales: within patches and between patches. This leads to a significantly increased search efficiency over a comparable area restricted search strategy. These four chapters are completed by a general analysis of metapopulation dynamics (chapter 2). I find that although the metapopulation concept is very popular in theoretical ecology, classical metapopulations can be predicted to be rare in nature, as suggested by lacking empirical evidence. This is especially the case when gene level factors, such as ploidy and sex, are taken into account. In summary, my work analyses the effects of ecological and evolutionary forces arising at the gene- and individual level on the evolution of dispersal and movement strategies. I highlight the importance of including these limiting factors, mechanisms and processes and show how they impact the evolution of dispersal in spatially structured populations. All chapters demonstrate that these forces may have dramatic effects on resulting ecological and evolutionary dynamics. If we intend to understand animal and plant dispersal or movement, it is crucial to include eco-evolutionary forces emerging at all levels of complexity, from genes to communities and landscapes. This endeavour is certainly not purely academic. Particularly nowadays, with rapidly changing landscape structures and anticipated drastic shifts of climatic zones due to global change, dispersal is a factor that cannot be overestimated.}, subject = {Metapopulation}, language = {en} } @phdthesis{Hein2014, author = {Hein, Melanie}, title = {Functional analysis of angiogenic factors in tumor cells and endothelia}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-93863}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Tumor angiogenesis is essential for the growth of solid tumors as their proliferation and survival is dependent on consistent oxygen and nutrient supply. Anti-angiogenic treatments represent a therapeutic strategy to inhibit tumor growth by preventing the formation of new blood vessels leading to starvation of the tumor. One of the best characterized anti angiogenic therapeutics is the monoclonal antibody bevacizumab (Avastin), which targets and neutralizes VEGF leading to disruption of the VEGF signaling pathway. Until today, bevacizumab has found its way into clinical practice and has gained approval for treatment of different types of cancer including colorectal cancer, non-small cell lung cancer, breast cancer and renal cell carcinoma. Signaling of VEGF is mediated through VEGF receptors, mainly VEGFR2, which are primarily located on the cell surface of endothelial cells. However, there has been evidence that expression of VEGF receptors can also be found on tumor cells themselves raising the possibility of autocrine and/or paracrine signaling loops. Thus, tumor cells could also benefit from VEGF signaling, which would promote tumor growth. The aim of this study was to investigate if bevacizumab has a direct effect on tumor cells in vitro. To this end, tumor cell lines from the NCI-60 panel derived from four different tumor types were treated with bevacizumab and angiogenic gene and protein expression as well as biological outputs including proliferation, migration and apoptosis were investigated. Most of the experiments were performed under hypoxia to mimic the in vivo state of tumors. Overall, there was a limited measurable effect of bevacizumab on treated tumor cell lines according to gene and protein expression changes as well as biological functions when compared to endothelial controls. Minor changes in terms of proliferation or gene regulation were evident in a single tumor cell line after VEGF-A blockade by bevacizumab, which partially demonstrated a direct effect on tumor cells. However, the overall analysis revealed that tumor cell lines are not intrinsically affected in an adverse manner by bevacizumab treatment. Besides the functional analysis of tumor cells, embryonic stem cell derived endothelial cells were characterized to delineate vascular Hey gene functions. Hey and Hes proteins are the best characterized downstream effectors of the evolutionary conserved Notch signaling pathway, which mainly act as transcriptional repressors regulating downstream target genes. Hey proteins play a crucial role in embryonic development as loss of Hey1 and Hey2 in mice in vivo leads to a severe vascular phenotype resulting in early embryonic lethality. The major aim of this part of the thesis was to identify vascular Hey target genes using embryonic stem cell derived endothelial cells utilizing a directed endothelial differentiation approach, as ES cells and their differentiation ability provide a powerful in vitro system to study developmental processes. To this end, Hey deficient and Hey wildtype embryonic stem cells were stably transfected with an antibiotic selection marker driven by an endothelial specific promoter, which allows selection for endothelial cells. ESC-derived endothelial cells exhibited typical endothelial characteristics as shown by marker gene expression, immunofluorescent staining and tube formation ability. In a second step, Hey deficient ES cells were stably transfected with doxycycline inducible Flag-tagged Hey1 and Hey2 transgenes to re-express Hey proteins in the respective cell line. RNA-Sequencing of Hey deficient and Hey overexpressing ES cells as well as ESC-derived endothelial cells revealed many Hey downstream target genes in ES cells and fewer target genes in endothelial cells. Hey1 and Hey2 more or less redundantly regulate target genes in ES cells, but some genes were regulated by Hey2 alone. According to Gene Ontology term analysis, Hey target genes are mainly involved in embryonic development and transcriptional regulation. However, the response of ESC-derived endothelial cells in regulating Hey downstream target genes was rather limited when compared to ES cells, which could be due to lower transgene expression in endothelial cells. The limited response also raises the possibility that target gene regulation in endothelial cells is not only dependent on Hey gene functions alone and thus loss or overexpression of Hey genes in this in vitro setting does not influence target gene regulation.}, subject = {Krebs }, language = {en} } @phdthesis{Eman2013, author = {Eman, Maher Othman Sholkamy}, title = {In Vitro and In Vivo Analysis of Insulin-Induced Oxidative Stress and DNA Damage}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-69274}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Hyperinsulinemia, a condition with excessively high insulin blood levels, is related to an increased cancer incidence. Diabetes mellitus, metabolic syndrome, obesity and polycystic ovarian syndrome are the most common of several diseases accompanied by hyperinsulinemia. Since an elevated cancer risk especially for colon and kidney cancers, was reported for those patients, we investigated for the first time the induction of genomic damage by insulin mainly in HT29 (human colon cells), LLC-PK1 (pig kidney cells), HK2 (human kidney cells) and peripheral lymphocytes, and to confirm the genotoxicity of insulin in other cells from different tissues. To ascertain that the insulin effects were not only limited to permanent cell lines, rat primary colon, kidney, liver and fatty tissue cells were also studied. To connect the study and the findings to in vivo conditions, two in vivo models for hyperinsulinemia were used; Zucker diabetic fatty rats in a lean and diabetic state infused with different insulin concentrations and peripheral lymphocytes from type 2 diabetes mellitus patients. First, the human colon adenocarcinoma cells (HT29) showed significant elevation of DNA damage using comet assay and micronucleus frequency analysis upon treatment with 5 nM insulin in standard protocols. Extension of the treatment to 6 days lowered the concentration needed to reach significance to 0.5-1 nM. Insulin enhanced the cellular ROS production as examined by the oxidation of the dyes 2´,7´-dichlorodihydrofluorescein diacetate (H2DCF-DA) and dihydroethidium (DHE). The FPG modified comet assay and the reduction of damage by the radical scavenger tempol connected the insulin-mediatedDNA damage to ROS production. To investigate the sources of ROS upon insulin stimulation, apocynin and VAS2870 as NADPH oxidase inhibitors and rotenone as mitochondrial inhibitor were applied in combination with insulin and all of them led to a reduction of the genomic damage. Investigation of the signaling pathway started by evaluation of the binding of insulin to its receptor and to the IGF-1 receptor. The results showed the involvement of both receptors in the signaling mechanism. Following the activation of both receptors, PI3K activation occurs leading to phosphorylation of AKT which in turn activates two pathways for ROS production, the first related to mitochondria and the second through activation of Rac1 , resulting in the activation of Nox1. Both pathways could be activated through AKT or through the mitochondrial ROS which in turn could activates Nox1. Studying another human colon cancer cell line, Caco-2 and rat primary colon cells in vitro confirmed the effect of insulin on cellular chromatin. We conclude that pathophysiological levels of insulin can cause DNA damage in colon cells, which may contribute to the induction or progression of colon cancer. Second, in kidney cells, insulin at a concentration of 5 nM caused a significant increase in DNA damage in vitro. This was associated with the formation of reactive oxygen species (ROS). In the presence of antioxidants, blockers of the insulin and IGF-1 receptors, and a phosphatidylinositol 3-kinases (PI3K) inhibitor, the insulin mediated DNA damage was reduced. Phosphorylation of AKT was increased and p53 accumulated. Inhibition of the mitochondrial and NADPH oxidase related ROS production reduced the insulin mediated damage. In primary rat cells insulin also induced genomic damage. HK2 cells were used to investigate the mechanistic pathway in the kidney The signaling is identical to the one in the colon cells untill the activation of the mitochondrial ROS production, because after the activation of PI3K activation of Nox4 occurs at the same time across talk between mitochondria and Nox4 activation has been suggested and might play a role in the observed effects. In the in vivo model, kidneys from healthy, lean ZDF rats, which were infused with insulin to yield normal or high blood insulin levels, while keeping blood glucose levels constant, the amounts of ROS and p53 were elevated in the high insulin group compared to the control level group. ROS and p53 were also elevated in diabetic obese ZDF rats. The treatment of the diabetic rats with metformin reduced the DNA oxidation measured as 8-oxodG as well as the ROS production in that group. HL60 the human premyelocytic cells and cultured lymphocytes as models for the hemopoietic system cells showed a significant induction for DNA damage upon treatment with insulin. The diabetic patients also exhibited an increase in the micronucleus formation over the healthy individuals. In the present study, we showed for the first time that insulin induced oxidative stress resulting in genomic damage in different tissues, and that the source of the produced ROS differs between the tissues. If the same mechanisms are active in patients, hyperinsulinemia might cause genomic damage through the induction of ROS contributing to the increased cancer risk, against which the use of antioxidants as well as mitochondrial and NADPH oxidase inhibitors might exert protective effects with cancer preventive potential under certain conditions. Normal healthy human plasma insulin concentrations are in the order of 0.04 nM after overnight fasting and increase to less than about 0.2 nM after a meal. Pathophysiological levels can reach 1 nM and can stay above 0.2 nM for the majority of the daytime yielding condictions close to the insulin concentrations determined in the present study. Whether the observed effects also occur in vivo and whether they actually initiate or promote tumor formation remains to be determined. However, if proof of that can be obtained, our experiments with inhibitors indicate chances for pharmacological intervention applying antioxidants or enzyme inhibitors. It will not be the aim to reduce ROS in any case or as much as possible because ROS have now been recognized as important signaling molecules and participatants in immune defense, but a reduction to physiological levels instead of pathophysiological levels in the context of a disease associated with ROS overproduction might be beneficial.}, subject = {Insulin}, language = {en} } @phdthesis{Alexander2019, author = {Alexander, Stephanie}, title = {Collective cancer cell invasion \(in\) \(vivo\): function of β1 and β3 integrins in perivascular invasion and resistance to therapy}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-85435}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Pro-migratory signals mediated by the tumor microenvironment contribute to the cancer progression cascade, including invasion, metastasis and resistance to therapy. Derived from in vitro studies, isolated molecular steps of cancer invasion programs have been identified but their integration into the tumor microenvironment and suitability as molecular targets remain elusive. The purpose of the study was to visualize central aspects of tumor progression, including proliferation, survival and invasion by real-time intravital microscopy. The specific aims were to monitor the kinetics, mode, adhesion and chemoattraction mechanisms of tumor cell invasion, the involved guidance structures, and the response of invasion zones to anti-cancer therapy. To reach deeper tumor regions by optical imaging with subcellular resolution, near-infrared and infrared excited multiphoton microscopy was combined with a modified dorsal skinfold chamber model. Implanted HT-1080 fibrosarcoma and B16/F10 and MV3 melanoma tumors developed zones of invasive growth consisting of collective invasion strands that retained cell-cell contacts and high mitotic activity while invading at velocities of up to 200 μm per day. Collective invasion occurred predominantly along preexisting tissue structures, including blood and lymph vessels, collagen fibers and muscle strands of the deep dermis, and was thereby insensitive to RNAi based knockdown and/or antibody-based treatment against β1 and β3 integrins, chemokine (SDF-1/CXCL12) and growth factor (EGF) signaling. Therapeutic hypofractionated irradiation induced partial to complete regression of the tumor main mass, yet failed to eradicate the collective invasion strands, suggesting a microenvironmentally privileged niche. Whereas no radiosensitization was achieved by interference with EGFR or doxorubicin, the simultaneous inhibition of β1 and β3 integrins impaired cell proliferation and survival in spontaneously growing tumors and strongly enhanced the radiation response up to complete eradication of both main tumor and invasion strands. In conclusion, collective invasion in vivo is a robust process which follows preexisting tissue structures and is mainly independent of established adhesion and chemoattractant signaling. Due to its altered biological response to irradiation, collective invasion strands represent a microenvironmentally controlled and clinically relevant resistance niche to therapy. Therefore supportive regimens, such as anoikisinduction by anti-integrin therapy, may serve to enhance radio- and chemoefficacy and complement classical treatment regimens.}, subject = {Tumorzelle}, language = {en} }