@article{DandekarLiangKrueger2013, author = {Dandekar, Thomas and Liang, Chunguang and Kr{\"u}ger, Beate}, title = {GoSynthetic database tool to analyse natural and engineered molecular processes}, series = {Database}, journal = {Database}, doi = {10.1093/database/bat043}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-97023}, year = {2013}, abstract = {An essential topic for synthetic biologists is to understand the structure and function of biological processes and involved proteins and plan experiments accordingly. Remarkable progress has been made in recent years towards this goal. However, efforts to collect and present all information on processes and functions are still cumbersome. The database tool GoSynthetic provides a new, simple and fast way to analyse biological processes applying a hierarchical database. Four different search modes are implemented. Furthermore, protein interaction data, cross-links to organism-specific databases (17 organisms including six model organisms and their interactions), COG/KOG, GO and IntAct are warehoused. The built in connection to technical and engineering terms enables a simple switching between biological concepts and concepts from engineering, electronics and synthetic biology. The current version of GoSynthetic covers more than one million processes, proteins, COGs and GOs. It is illustrated by various application examples probing process differences and designing modifications.}, language = {en} } @article{DandekarAhmedSamanetal.2013, author = {Dandekar, Thomas and Ahmed, Zeeshan and Saman, Zeeshan and Huber, Claudia and Hensel, Michael and Schomburg, Dietmar and M{\"u}nch, Richard and Eisenreich, Wolfgang}, title = {Software LS-MIDA for efficient mass isotopomer distribution analysis in metabolic modelling}, series = {BMC Bioinformatics}, journal = {BMC Bioinformatics}, doi = {10.1186/1471-2334-13-266}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-95882}, year = {2013}, abstract = {Background The knowledge of metabolic pathways and fluxes is important to understand the adaptation of organisms to their biotic and abiotic environment. The specific distribution of stable isotope labelled precursors into metabolic products can be taken as fingerprints of the metabolic events and dynamics through the metabolic networks. An open-source software is required that easily and rapidly calculates from mass spectra of labelled metabolites, derivatives and their fragments global isotope excess and isotopomer distribution. Results The open-source software "Least Square Mass Isotopomer Analyzer" (LS-MIDA) is presented that processes experimental mass spectrometry (MS) data on the basis of metabolite information such as the number of atoms in the compound, mass to charge ratio (m/e or m/z) values of the compounds and fragments under study, and the experimental relative MS intensities reflecting the enrichments of isotopomers in 13C- or 15 N-labelled compounds, in comparison to the natural abundances in the unlabelled molecules. The software uses Brauman's least square method of linear regression. As a result, global isotope enrichments of the metabolite or fragment under study and the molar abundances of each isotopomer are obtained and displayed. Conclusions The new software provides an open-source platform that easily and rapidly converts experimental MS patterns of labelled metabolites into isotopomer enrichments that are the basis for subsequent observation-driven analysis of pathways and fluxes, as well as for model-driven metabolic flux calculations.}, language = {en} } @article{CorneliusLeingaertnerHoissetal.2013, author = {Cornelius, Christine and Leing{\"a}rtner, Annette and Hoiss, Bernhard and Krauss, Jochen and Steffan-Dewenter, Ingolf and Menzel, Annette}, title = {Phenological response of grassland species to manipulative snowmelt and drought along an altitudinal gradient}, series = {Journal of Experimental Botany}, volume = {64}, journal = {Journal of Experimental Botany}, number = {1}, doi = {10.1093/jxb/ers321}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-126888}, pages = {241-251}, year = {2013}, abstract = {Plant communities in the European Alps are assumed to be highly affected by climate change, as the temperature rise in this region is above the global average. It is predicted that higher temperatures will lead to advanced snowmelt dates and that the number of extreme weather events will increase. The aims of this study were to determine the impacts of extreme climatic events on flower phenology and to assess whether those impacts differed between lower and higher altitudes. In 2010, an experiment simulating advanced and delayed snowmelt as well as a drought event was conducted along an altitudinal transect approximately every 250 m (600-2000 m above sea level) in the Berchtesgaden National Park, Germany. The study showed that flower phenology was strongly affected by altitude; however, there were few effects of the manipulative treatments on flowering. The effects of advanced snowmelt were significantly greater at higher than at lower sites, but no significant difference was found between both altitudinal bands for the other treatments. The response of flower phenology to temperature declined through the season and the length of flowering duration was not significantly influenced by treatments. The stronger effect of advanced snowmelt at higher altitudes may be a response to differences in treatment intensity across the gradient. Consequently, shifts in the date of snowmelt due to global warming may affect species more at higher than at lower altitudes, as changes may be more pronounced at higher altitudes. These data indicate a rather low risk of drought events on flowering phenology in the Bavarian Alps.}, language = {en} } @phdthesis{Busch2013, author = {Busch, Rhoda}, title = {Redundancy and indispensability of NFATc1-isoforms in the adaptive and innate immune system}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-91096}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Peritonitis is a common disease in man, frequently caused by fungi, such as Candida albicans; however, in seldom cases opportunistic infections with Saccharomyces cerevisiae are described. Resident peritoneal macrophages (prMΦ) are the major group of phagocytic cells in the peritoneum. They express a broad range of surface pattern recognition receptors (PRR) to recognize invaders. Yeast infections are primarily detected by the Dectin-1 receptor, which triggers activation of NFAT and NF-κB pathways. The transcription of the Nfatc1 gene is directed by the two alternative promoters, inducible P1 and relatively constitutive P2 promoter. While the role of P1-directed NFATc1α-isoforms to promote survival and proliferation of activated lymphocytes is well-established, the relevance of constitutively generated NFATc1β-isoforms, mainly expressed in resting lymphocytes, myeloid and non-lymphoid cells, remains unclear. Moreover, former work at our department indicated different roles for NFATc1α- and NFATc1β-proteins in lymphocytes. Our data revealed the functional role of NFATc1 in peritoneal resident macrophages. We demonstrated that the expression of NFATc1β is required for a proper immune response of prMΦ during fungal infection-induced acute peritonitis. We identified Ccl2, a major chemokine produced in response to fungal infections by prMΦ, as a novel NFATc1 target gene which is cooperatively regulated through the NFAT- and canonical NF-κB pathways. Consequently, we showed that NFATc1β deficiency in prMΦ results in a decreased infiltration of inflammatory monocytes, leading to a delayed clearance of peritoneal fungal infection. We could further show that the expression of NFATc1β-isoforms is irrelevant for homeostasis of myeloid and adaptive immune system cells and that NFATc1α- (but not β-) isoforms are required for a normal development of peritoneal B1a cells. In contrast to the situation in myeloid cells, NFATc1β deficiency is compensated by increased expression of NFATc1α-isoforms in lymphoid cells. As a consequence, NFATc1ß is dispensable for activation of the adaptive immune system. Taken together our results illustrate the redundancy and indispensability of NFATc1-isoforms in the adaptive and innate immune system, indicating a complex regulatory system for Nfatc1 gene expression in different compartments of the immune system and likely beyond that.}, subject = {Immunsystem}, language = {en} } @article{BuchnerBlancoRedondoBunzetal.2013, author = {Buchner, Erich and Blanco Redondo, Beatriz and Bunz, Melanie and Halder, Partho and Sadanandappa, Madhumala K. and M{\"u}hlbauer, Barbara and Erwin, Felix and Hofbauer, Alois and Rodrigues, Veronica and VijayRaghavan, K. and Ramaswami, Mani and Rieger, Dirk and Wegener, Christian and F{\"o}rster, Charlotte}, title = {Identification and Structural Characterization of Interneurons of the Drosophila Brain by Monoclonal Antibodies of the W{\"u}rzburg Hybridoma Library}, series = {PLoS ONE}, journal = {PLoS ONE}, doi = {10.1371/journal.pone.0075420}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-97109}, year = {2013}, abstract = {Several novel synaptic proteins have been identified by monoclonal antibodies (mAbs) of the W{\"u}rzburg hybridoma library generated against homogenized Drosophila brains, e.g. cysteine string protein, synapse-associated protein of 47 kDa, and Bruchpilot. However, at present no routine technique exists to identify the antigens of mAbs of our library that label only a small number of cells in the brain. Yet these antibodies can be used to reproducibly label and thereby identify these cells by immunohistochemical staining. Here we describe the staining patterns in the Drosophila brain for ten mAbs of the W{\"u}rzburg hybridoma library. Besides revealing the neuroanatomical structure and distribution of ten different sets of cells we compare the staining patterns with those of antibodies against known antigens and GFP expression patterns driven by selected Gal4 lines employing regulatory sequences of neuronal genes. We present examples where our antibodies apparently stain the same cells in different Gal4 lines suggesting that the corresponding regulatory sequences can be exploited by the split-Gal4 technique for transgene expression exclusively in these cells. The detection of Gal4 expression in cells labeled by mAbs may also help in the identification of the antigens recognized by the antibodies which then in addition to their value for neuroanatomy will represent important tools for the characterization of the antigens. Implications and future strategies for the identification of the antigens are discussed.}, language = {en} } @article{BrehmKoziolKrohne2013, author = {Brehm, Klaus and Koziol, Uriel and Krohne, Georg}, title = {Anatomy and development of the larval nervous system in Echinococcus multilocularis}, series = {Frontiers in Zoology}, journal = {Frontiers in Zoology}, doi = {10.1186/1742-9994-10-24}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-96504}, year = {2013}, abstract = {Background The metacestode larva of Echinococcus multilocularis (Cestoda: Taeniidae) develops in the liver of intermediate hosts (typically rodents, or accidentally in humans) as a labyrinth of interconnected cysts that infiltrate the host tissue, causing the disease alveolar echinococcosis. Within the cysts, protoscoleces (the infective stage for the definitive canid host) arise by asexual multiplication. These consist of a scolex similar to that of the adult, invaginated within a small posterior body. Despite the importance of alveolar echinococcosis for human health, relatively little is known about the basic biology, anatomy and development of E. multilocularis larvae, particularly with regard to their nervous system. Results We describe the existence of a subtegumental nerve net in the metacestode cysts, which is immunoreactive for acetylated tubulin-α and contains small populations of nerve cells that are labeled by antibodies raised against several invertebrate neuropeptides. However, no evidence was found for the existence of cholinergic or serotoninergic elements in the cyst wall. Muscle fibers occur without any specific arrangement in the subtegumental layer, and accumulate during the invaginations of the cyst wall that form brood capsules, where protoscoleces develop. The nervous system of the protoscolex develops independently of that of the metacestode cyst, with an antero-posterior developmental gradient. The combination of antibodies against several nervous system markers resulted in a detailed description of the protoscolex nervous system, which is remarkably complex and already similar to that of the adult worm. Conclusions We provide evidence for the first time of the existence of a nervous system in the metacestode cyst wall, which is remarkable given the lack of motility of this larval stage, and the lack of serotoninergic and cholinergic elements. We propose that it could function as a neuroendocrine system, derived from the nervous system present in the bladder tissue of other taeniids. The detailed description of the development and anatomy of the protoscolex neuromuscular system is a necessary first step toward the understanding of the developmental mechanisms operating in these peculiar larval stages.}, language = {en} } @phdthesis{Bollmann2013, author = {Bollmann, Stefan}, title = {Structural Dynamics of Oligopeptides determined by Fluorescence Quenching of Organic Dyes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-92191}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {For determination of structures and structural dynamics of proteins organic fluorophores are a standard instrument. Intra- and intermolecular contact of biomolecular structures are determined in time-resolved and stationary fluorescence microscopy experiments by quenching of organic fluorophores due to Photoinduced Electron Transfer (PET) and dimerization interactions. Using PET we show in this work that end-to-end contact dynamics of serine-glycine peptides are slowed down by glycosylation. This slow down is due to a change in reaction enthalpy for end-to-end contact and is partly compensated by entropic effects. In a second step we test how dimerization of MR121 fluorophore pairs reports on end-to-end contact dynamics. We show that in aqueous solutions containing strong denaturants MR121 dimerization reports advantageously on contact dynamics for glycine-serine oligopeptides compared to the previously used MR121/tryptophane PET reporters. Then we analyze dimer interactions and quenching properties of different commercially available fluorophores being standards in F{\"o}rster Resonance Energy Transfer (FRET) measurements. Distances in biomolecules are determinable using FRET, but for very flexible biomolecules the analysis of masurement data can be distorted if contact of the two FRET fluorophores is likely. We quantify how strong the quenching of fluorophore pairs with two different or two identical fluorophores is. Dimer spectra and association constants are quantified to estimate if fluophores are applicable in various applications, e.g. in FRET measurements with unstructured peptides and proteins.}, subject = {Fluorophore}, language = {en} } @article{BogdanSchultzGrosshans2013, author = {Bogdan, Sven and Schultz, J{\"o}rg and Grosshans, J{\"o}rg}, title = {Formin' cellular structures: Physiological roles of Diaphanous (Dia) in actin dynamics}, series = {Communicative \& Integrative Biology}, volume = {6}, journal = {Communicative \& Integrative Biology}, number = {e27634}, doi = {10.4161/cib.27634}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-121305}, year = {2013}, abstract = {Members of the Diaphanous (Dia) protein family are key regulators of fundamental actin driven cellular processes, which are conserved from yeast to humans. Researchers have uncovered diverse physiological roles in cell morphology, cell motility, cell polarity, and cell division, which are involved in shaping cells into tissues and organs. The identification of numerous binding partners led to substantial progress in our understanding of the differential functions of Dia proteins. Genetic approaches and new microscopy techniques allow important new insights into their localization, activity, and molecular principles of regulation.}, language = {en} } @phdthesis{Benadi2013, author = {Benadi, Gita}, title = {Linking specialisation and stability of plant-pollinator networks}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-85288}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {In this dissertation, I examine the relationship between specialisation and stability of plant-pollinator networks, with a focus on two issues: Diversity maintenance in animal-pollinated plant communities and robustness of plant-pollinator systems against disturbances such as those caused by anthropogenic climate change. Chapter 1 of this thesis provides a general introduction to the concepts of ecological stability and specialisation with a focus on plant-pollinator systems, and a brief outline of the following chapters. Chapters 2-5 each consist of a research article addressing a specific question. While chapters 2 and 3 deal with different aspects of diversity maintenance in animal-pollinated plant communities, chapters 4 and 5 are concerned with the consequences of climate change in the form of temporary disturbances caused by extreme climatic events (chapter 4) and shifts in phenology of plants and pollinators (chapter 5). From a methodological perspective, the first three articles (chapter 2-4) can be grouped together as they all employ mathematical models of plant-pollinator systems, whereas chapter 5 describes an empirical study of plant-pollinator interactions along an altitudinal gradient in the Alps. The final chapter (6) provides a review of current knowledge on each of the two main themes of this thesis and places the findings of the four research articles in the context of related studies.}, subject = {Theoretische {\"O}kologie}, language = {en} } @article{BeierGaetschenbergerAzzamietal.2013, author = {Beier, Hildburg and G{\"a}tschenberger, Heike and Azzami, Klara and Tautz, J{\"u}rgen}, title = {Antibacterial Immune Competence of Honey Bees (Apis mellifera) Is Adapted to Different Life Stages and Environmental Risks}, series = {PLoS ONE}, journal = {PLoS ONE}, doi = {10.1371/journal.pone.0066415}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-96895}, year = {2013}, abstract = {The development of all honey bee castes proceeds through three different life stages all of which encounter microbial infections to a various extent. We have examined the immune strength of honey bees across all developmental stages with emphasis on the temporal expression of cellular and humoral immune responses upon artificial challenge with viable Escherichia coli bacteria. We employed a broad array of methods to investigate defence strategies of infected individuals: (a) fate of bacteria in the haemocoel; (b) nodule formation and (c) induction of antimicrobial peptides (AMPs). Newly emerged adult worker bees and drones were able to activate efficiently all examined immune reactions. The number of viable bacteria circulating in the haemocoel of infected bees declined rapidly by more than two orders of magnitude within the first 4-6 h post-injection (p.i.), coinciding with the occurrence of melanised nodules. Antimicrobial activity, on the other hand, became detectable only after the initial bacterial clearance. These two temporal patterns of defence reactions very likely represent the constitutive cellular and the induced humoral immune response. A unique feature of honey bees is that a fraction of worker bees survives the winter season in a cluster mostly engaged in thermoregulation. We show here that the overall immune strength of winter bees matches that of young summer bees although nodulation reactions are not initiated at all. As expected, high doses of injected viable E.coli bacteria caused no mortality in larvae or adults of each age. However, drone and worker pupae succumbed to challenge with E.coli even at low doses, accompanied by a premature darkening of the pupal body. In contrast to larvae and adults, we observed no fast clearance of viable bacteria and no induction of AMPs but a rapid proliferation of E.coli bacteria in the haemocoel of bee pupae ultimately leading to their death.}, language = {en} }