@article{NaseemKunzDandekar2014, author = {Naseem, Muhammad and Kunz, Meik and Dandekar, Thomas}, title = {Probing the unknowns in cytokinin-mediated immune defense in Arabidopsis with systems biology approaches}, series = {Bioinformatics and Biology Insights}, volume = {8}, journal = {Bioinformatics and Biology Insights}, issn = {1177-9322}, doi = {10.4137/bbi.s13462}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-120199}, pages = {35-44}, year = {2014}, abstract = {Plant hormones involving salicylic acid (SA), jasmonic acid (JA), ethylene (Et), and auxin, gibberellins, and abscisic acid (ABA) are known to regulate host immune responses. However, plant hormone cytokinin has the potential to modulate defense signaling including SA and JA. It promotes plant pathogen and herbivore resistance; underlying mechanisms are still unknown. Using systems biology approaches, we unravel hub points of immune interaction mediated by cytokinin signaling in Arabidopsis. High-confidence Arabidopsis protein-protein interactions (PPI) are coupled to changes in cytokinin-mediated gene expression. Nodes of the cellular interactome that are enriched in immune functions also reconstitute sub-networks. Topological analyses and their specific immunological relevance lead to the identification of functional hubs in cellular interactome. We discuss our identified immune hubs in light of an emerging model of cytokinin-mediated immune defense against pathogen infection in plants.}, language = {en} } @article{NaseemSrivastavaDandekar2014, author = {Naseem, Muhammad and Srivastava, Mugdha and Dandekar, Thomas}, title = {Stem-cell-triggered immunity safeguards cytokinin enriched plant shoot apexes from pathogen infection}, series = {Frontiers in Plant Science}, volume = {5}, journal = {Frontiers in Plant Science}, issn = {1664-462X}, doi = {10.3389/fpls.2014.00588}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-118247}, pages = {588}, year = {2014}, abstract = {Intricate mechanisms discriminate between friends and foes in plants. Plant organs deploy overlapping and distinct protection strategies. Despite vulnerability to a plethora of pathogens, the growing tips of plants grow bacteria free. The shoot apical meristem (SAM) is among three stem cells niches, a self-renewable reservoir for the future organogenesis of leaf, stem, and flowers. How plants safeguard this high value growth target from infections was not known until now. Recent reports find the stem cell secreted 12-amino acid peptide CLV3p (CLAVATA3 peptide) is perceived by FLS2 (FLAGELLIN SENSING 2) receptor and activates the transcription of immunity and defense marker genes. No infection in the SAM of wild type plants and bacterial infection in clv3 and fls2 mutants illustrate this natural protection against infections. Cytokinins (CKs) are enriched in the SAM and regulate meristem activities by their involvement in stem cell signaling networks. Auxin mediates plant susceptibility to pathogen infections while CKs boost plant immunity. Here, in addition to the stem-cell-triggered immunity we also highlight a potential link between CK signaling and CLV3p mediated immune response in the SAM.}, language = {en} } @article{AhmedZeeshanHuberetal.2014, author = {Ahmed, Zeeshan and Zeeshan, Saman and Huber, Claudia and Hensel, Michael and Schomburg, Dietmar and M{\"u}nch, Richard and Eylert, Eva and Eisenreich, Wolfgang and Dandekar, Thomas}, title = {'Isotopo' a database application for facile analysis and management of mass isotopomer data}, series = {Database}, volume = {2014}, journal = {Database}, number = {bau077}, doi = {10.1093/database/bau077}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-120102}, year = {2014}, abstract = {The composition of stable-isotope labelled isotopologues/isotopomers in metabolic products can be measured by mass spectrometry and supports the analysis of pathways and fluxes. As a prerequisite, the original mass spectra have to be processed, managed and stored to rapidly calculate, analyse and compare isotopomer enrichments to study, for instance, bacterial metabolism in infection. For such applications, we provide here the database application 'Isotopo'. This software package includes (i) a database to store and process isotopomer data, (ii) a parser to upload and translate different data formats for such data and (iii) an improved application to process and convert signal intensities from mass spectra of \(^{13}C\)-labelled metabolites such as tertbutyldimethylsilyl-derivatives of amino acids. Relative mass intensities and isotopomer distributions are calculated applying a partial least square method with iterative refinement for high precision data. The data output includes formats such as graphs for overall enrichments in amino acids. The package is user-friendly for easy and robust data management of multiple experiments.}, language = {en} } @article{KernAgarwalHuberetal.2014, author = {Kern, Selina and Agarwal, Shruti and Huber, Kilian and Gehring, Andre P. and Str{\"o}dke, Benjamin and Wirth, Christine C. and Br{\"u}gl, Thomas and Abodo, Liane Onambele and Dandekar, Thomas and Doerig, Christian and Fischer, Rainer and Tobin, Andrew B. and Alam, Mahmood M. and Bracher, Franz and Pradel, Gabriele}, title = {Inhibition of the SR Protein-Phosphorylating CLK Kinases of Plasmodium falciparum Impairs Blood Stage Replication and Malaria Transmission}, series = {PLOS ONE}, volume = {9}, journal = {PLOS ONE}, number = {9}, issn = {1932-6203}, doi = {10.1371/journal.pone.0105732}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-115405}, pages = {e105732}, year = {2014}, abstract = {Cyclin-dependent kinase-like kinases (CLKs) are dual specificity protein kinases that phosphorylate Serine/Arginine-rich (SR) proteins involved in pre-mRNA processing. Four CLKs, termed PfCLK-1-4, can be identified in the human malaria parasite Plasmodium falciparum, which show homology with the yeast SR protein kinase Sky1p. The four PfCLKs are present in the nucleus and cytoplasm of the asexual blood stages and of gametocytes, sexual precursor cells crucial for malaria parasite transmission from humans to mosquitoes. We identified three plasmodial SR proteins, PfSRSF12, PfSFRS4 and PfSF-1, which are predominantly present in the nucleus of blood stage trophozoites, PfSRSF12 and PfSF-1 are further detectable in the nucleus of gametocytes. We found that recombinantly expressed SR proteins comprising the Arginine/Serine (RS)-rich domains were phosphorylated by the four PfCLKs in in vitro kinase assays, while a recombinant PfSF-1 peptide lacking the RS-rich domain was not phosphorylated. Since it was hitherto not possible to knock-out the pfclk genes by conventional gene disruption, we aimed at chemical knock-outs for phenotype analysis. We identified five human CLK inhibitors, belonging to the oxo-beta-carbolines and aminopyrimidines, as well as the antiseptic chlorhexidine as PfCLK-targeting compounds. The six inhibitors block P. falciparum blood stage replication in the low micromolar to nanomolar range by preventing the trophozoite-to-schizont transformation. In addition, the inhibitors impair gametocyte maturation and gametogenesis in in vitro assays. The combined data show that the four PfCLKs are involved in phosphorylation of SR proteins with essential functions for the blood and sexual stages of the malaria parasite, thus pointing to the kinases as promising targets for antimalarial and transmission blocking drugs.}, language = {en} } @article{ShityakovFoersterRethwilmetal.2014, author = {Shityakov, Sergey and F{\"o}rster, Carola and Rethwilm, Axel and Dandekar, Thomas}, title = {Evaluation and Prediction of the HIV-1 Central Polypurine Tract Influence on Foamy Viral Vectors to Transduce Dividing and Growth-Arrested Cells}, doi = {10.1155/2014/487969}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-112763}, year = {2014}, abstract = {Retroviral vectors are potent tools for gene delivery and various biomedical applications. To accomplish a gene transfer task successfully, retroviral vectors must effectively transduce diverse cell cultures at different phases of a cell cycle. However, very promising retroviral vectors based on the foamy viral (FV) backbone lack the capacity to efficiently transduce quiescent cells. It is hypothesized that this phenomenon might be explained as the inability of foamy viruses to form a pre-integration complex (PIC) with nuclear import activity in growth-arrested cells, which is the characteristic for lentiviruses (HIV-1). In this process, the HIV-1 central polypurine tract (cPPT) serves as a primer for plus-strand synthesis to produce a "flap" element and is believed to be crucial for the subsequent double-stranded cDNA formation of all retroviral RNA genomes. In this study, the effects of the lentiviral cPPT element on the FV transduction potential in dividing and growth-arrested (G1/S phase) adenocarcinomic human alveolar basal epithelial (A549) cells are investigated by experimental and theoretical methods. The results indicated that the HIV-1 cPPT element in a foamy viral vector background will lead to a significant reduction of the FV transduction and viral titre in growth-arrested cells due to the absence of PICs with nuclear import activity.}, subject = {Evaluation}, language = {en} } @article{BrehmHemerKonradetal.2014, author = {Brehm, Klaus and Hemer, Sarah and Konrad, Christian and Spiliotis, Markus and Koziol, Uriel and Schaack, Dominik and F{\"o}rster, Sabine and Gelmedin, Verena and Stadelmann, Britta and Dandekar, Thomas and Hemphill, Andrew}, title = {Host insulin stimulates Echinococcus multilocularis insulin signalling pathways and larval development}, doi = {10.1186/1741-7007-12-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-110357}, year = {2014}, abstract = {Background The metacestode of the tapeworm Echinococcus multilocularis is the causative agent of alveolar echinococcosis, a lethal zoonosis. Infections are initiated through establishment of parasite larvae within the intermediate host's liver, where high concentrations of insulin are present, followed by tumour-like growth of the metacestode in host organs. The molecular mechanisms determining the organ tropism of E. multilocularis or the influences of host hormones on parasite proliferation are poorly understood. Results Using in vitro cultivation systems for parasite larvae we show that physiological concentrations (10 nM) of human insulin significantly stimulate the formation of metacestode larvae from parasite stem cells and promote asexual growth of the metacestode. Addition of human insulin to parasite larvae led to increased glucose uptake and enhanced phosphorylation of Echinococcus insulin signalling components, including an insulin receptor-like kinase, EmIR1, for which we demonstrate predominant expression in the parasite's glycogen storage cells. We also characterized a second insulin receptor family member, EmIR2, and demonstrated interaction of its ligand binding domain with human insulin in the yeast two-hybrid system. Addition of an insulin receptor inhibitor resulted in metacestode killing, prevented metacestode development from parasite stem cells, and impaired the activation of insulin signalling pathways through host insulin. Conclusions Our data indicate that host insulin acts as a stimulant for parasite development within the host liver and that E. multilocularis senses the host hormone through an evolutionarily conserved insulin signalling pathway. Hormonal host-parasite cross-communication, facilitated by the relatively close phylogenetic relationship between E. multilocularis and its mammalian hosts, thus appears to be important in the pathology of alveolar echinococcosis. This contributes to a closer understanding of organ tropism and parasite persistence in larval cestode infections. Furthermore, our data show that Echinococcus insulin signalling pathways are promising targets for the development of novel drugs.}, language = {en} } @article{KarlDandekar2013, author = {Karl, Stefan and Dandekar, Thomas}, title = {Jimena: Efficient computing and system state identification for genetic regulatory networks}, series = {BMC Bioinformatics}, volume = {14}, journal = {BMC Bioinformatics}, doi = {10.1186/1471-2105-14-306}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-128671}, year = {2013}, abstract = {Background: Boolean networks capture switching behavior of many naturally occurring regulatory networks. For semi-quantitative modeling, interpolation between ON and OFF states is necessary. The high degree polynomial interpolation of Boolean genetic regulatory networks (GRNs) in cellular processes such as apoptosis or proliferation allows for the modeling of a wider range of node interactions than continuous activator-inhibitor models, but suffers from scaling problems for networks which contain nodes with more than ~10 inputs. Many GRNs from literature or new gene expression experiments exceed those limitations and a new approach was developed. Results: (i) As a part of our new GRN simulation framework Jimena we introduce and setup Boolean-tree-based data structures; (ii) corresponding algorithms greatly expedite the calculation of the polynomial interpolation in almost all cases, thereby expanding the range of networks which can be simulated by this model in reasonable time. (iii) Stable states for discrete models are efficiently counted and identified using binary decision diagrams. As application example, we show how system states can now be sampled efficiently in small up to large scale hormone disease networks (Arabidopsis thaliana development and immunity, pathogen Pseudomonas syringae and modulation by cytokinins and plant hormones). Conclusions: Jimena simulates currently available GRNs about 10-100 times faster than the previous implementation of the polynomial interpolation model and even greater gains are achieved for large scale-free networks. This speed-up also facilitates a much more thorough sampling of continuous state spaces which may lead to the identification of new stable states. Mutants of large networks can be constructed and analyzed very quickly enabling new insights into network robustness and behavior.}, language = {en} } @article{SchulzeTillichDandekaretal.2013, author = {Schulze, Katja and Tillich, Ulrich M. and Dandekar, Thomas and Frohme, Marcus}, title = {PlanktoVision - an automated analysis system for the identification of phytoplankton}, series = {BMC Bioinformatics}, journal = {BMC Bioinformatics}, doi = {10.1186/1471-2105-14-115}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-96395}, year = {2013}, abstract = {Background Phytoplankton communities are often used as a marker for the determination of fresh water quality. The routine analysis, however, is very time consuming and expensive as it is carried out manually by trained personnel. The goal of this work is to develop a system for an automated analysis. Results A novel open source system for the automated recognition of phytoplankton by the use of microscopy and image analysis was developed. It integrates the segmentation of the organisms from the background, the calculation of a large range of features, and a neural network for the classification of imaged organisms into different groups of plankton taxa. The analysis of samples containing 10 different taxa showed an average recognition rate of 94.7\% and an average error rate of 5.5\%. The presented system has a flexible framework which easily allows expanding it to include additional taxa in the future. Conclusions The implemented automated microscopy and the new open source image analysis system - PlanktoVision - showed classification results that were comparable or better than existing systems and the exclusion of non-plankton particles could be greatly improved. The software package is published as free software and is available to anyone to help make the analysis of water quality more reproducible and cost effective.}, language = {en} } @article{DandekarLiangKrueger2013, author = {Dandekar, Thomas and Liang, Chunguang and Kr{\"u}ger, Beate}, title = {GoSynthetic database tool to analyse natural and engineered molecular processes}, series = {Database}, journal = {Database}, doi = {10.1093/database/bat043}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-97023}, year = {2013}, abstract = {An essential topic for synthetic biologists is to understand the structure and function of biological processes and involved proteins and plan experiments accordingly. Remarkable progress has been made in recent years towards this goal. However, efforts to collect and present all information on processes and functions are still cumbersome. The database tool GoSynthetic provides a new, simple and fast way to analyse biological processes applying a hierarchical database. Four different search modes are implemented. Furthermore, protein interaction data, cross-links to organism-specific databases (17 organisms including six model organisms and their interactions), COG/KOG, GO and IntAct are warehoused. The built in connection to technical and engineering terms enables a simple switching between biological concepts and concepts from engineering, electronics and synthetic biology. The current version of GoSynthetic covers more than one million processes, proteins, COGs and GOs. It is illustrated by various application examples probing process differences and designing modifications.}, language = {en} } @article{DandekarAhmedSamanetal.2013, author = {Dandekar, Thomas and Ahmed, Zeeshan and Saman, Zeeshan and Huber, Claudia and Hensel, Michael and Schomburg, Dietmar and M{\"u}nch, Richard and Eisenreich, Wolfgang}, title = {Software LS-MIDA for efficient mass isotopomer distribution analysis in metabolic modelling}, series = {BMC Bioinformatics}, journal = {BMC Bioinformatics}, doi = {10.1186/1471-2334-13-266}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-95882}, year = {2013}, abstract = {Background The knowledge of metabolic pathways and fluxes is important to understand the adaptation of organisms to their biotic and abiotic environment. The specific distribution of stable isotope labelled precursors into metabolic products can be taken as fingerprints of the metabolic events and dynamics through the metabolic networks. An open-source software is required that easily and rapidly calculates from mass spectra of labelled metabolites, derivatives and their fragments global isotope excess and isotopomer distribution. Results The open-source software "Least Square Mass Isotopomer Analyzer" (LS-MIDA) is presented that processes experimental mass spectrometry (MS) data on the basis of metabolite information such as the number of atoms in the compound, mass to charge ratio (m/e or m/z) values of the compounds and fragments under study, and the experimental relative MS intensities reflecting the enrichments of isotopomers in 13C- or 15 N-labelled compounds, in comparison to the natural abundances in the unlabelled molecules. The software uses Brauman's least square method of linear regression. As a result, global isotope enrichments of the metabolite or fragment under study and the molar abundances of each isotopomer are obtained and displayed. Conclusions The new software provides an open-source platform that easily and rapidly converts experimental MS patterns of labelled metabolites into isotopomer enrichments that are the basis for subsequent observation-driven analysis of pathways and fluxes, as well as for model-driven metabolic flux calculations.}, language = {en} }