@article{GoosDejungWehmanetal.2019, author = {Goos, Carina and Dejung, Mario and Wehman, Ann M. and M-Natus, Elisabeth and Schmidt, Johannes and Sunter, Jack and Engstler, Markus and Butter, Falk and Kramer, Susanne}, title = {Trypanosomes can initiate nuclear export co-transcriptionally}, series = {Nucleic Acids Research}, volume = {47}, journal = {Nucleic Acids Research}, number = {1}, doi = {10.1093/nar/gky1136}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-177709}, pages = {266-282}, year = {2019}, abstract = {The nuclear envelope serves as important messenger RNA (mRNA) surveillance system. In yeast and human, several control systems act in parallel to prevent nuclear export of unprocessed mRNAs. Trypanosomes lack homologues to most of the involved proteins and their nuclear mRNA metabolism is non-conventional exemplified by polycistronic transcription and mRNA processing by trans-splicing. We here visualized nuclear export in trypanosomes by intra- and intermolecular multi-colour single molecule FISH. We found that, in striking contrast to other eukaryotes, the initiation of nuclear export requires neither the completion of transcription nor splicing. Nevertheless, we show that unspliced mRNAs are mostly prevented from reaching the nucleus-distant cytoplasm and instead accumulate at the nuclear periphery in cytoplasmic nuclear periphery granules (NPGs). Further characterization of NPGs by electron microscopy and proteomics revealed that the granules are located at the cytoplasmic site of the nuclear pores and contain most cytoplasmic RNA-binding proteins but none of the major translation initiation factors, consistent with a function in preventing faulty mRNAs from reaching translation. Our data indicate that trypanosomes regulate the completion of nuclear export, rather than the initiation. Nuclear export control remains poorly understood, in any organism, and the described way of control may not be restricted to trypanosomes.}, language = {en} } @article{GebertSteffanDewenterMorettoetal.2019, author = {Gebert, Friederike and Steffan-Dewenter, Ingolf and Moretto, Philippe and Peters, Marcell K.}, title = {Climate rather than dung resources predict dung beetle abundance and diversity along elevational and land use gradients on Mt. Kilimanjaro}, series = {Journal of Biogeography}, volume = {47}, journal = {Journal of Biogeography}, number = {2}, doi = {10.1111/jbi.13710}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-204701}, pages = {371 -- 381}, year = {2019}, abstract = {Aim: While elevational gradients in species richness constitute some of the best depicted patterns in ecology, there is a large uncertainty concerning the role of food resource availability for the establishment of diversity gradients in insects. Here, we analysed the importance of climate, area, land use and food resources for determining diversity gradients of dung beetles along extensive elevation and land use gradients on Mt. Kilimanjaro, Tanzania. Location: Mt. Kilimanjaro, Tanzania. Taxon: Scarabaeidae (Coleoptera). Methods: Dung beetles were recorded with baited pitfall traps at 66 study plots along a 3.6 km elevational gradient. In order to quantify food resources for the dung beetle community in form of mammal defecation rates, we assessed mammalian diversity and biomass with camera traps. Using a multi-model inference framework and path analysis, we tested the direct and indirect links between climate, area, land use and mammal defecation rates on the species richness and abundance of dung beetles. Results: We found that the species richness of dung beetles declined exponentially with increasing elevation. Human land use diminished the species richness of functional groups exhibiting complex behaviour but did not have a significant influence on total species richness. Path analysis suggested that climate, in particular temperature and to a lesser degree precipitation, were the most important predictors of dung beetle species richness while mammal defecation rate was not supported as a predictor variable. Main conclusions: Along broad climatic gradients, dung beetle diversity is mainly limited by climatic factors rather than by food resources. Our study points to a predominant role of temperature-driven processes for the maintenance and origination of species diversity of ectothermic organisms, which will consequently be subject to ongoing climatic changes.}, language = {en} } @article{RequierPailletLarocheetal.2019, author = {Requier, Fabrice and Paillet, Yoan and Laroche, Fabienne and Rutschmann, Benjamin and Zhang, Jie and Lombardi, Fabio and Svoboda, Miroslav and Steffan-Dewenter, Ingolf}, title = {Contribution of European forests to safeguard wild honeybee populations}, series = {Conservation Letters}, volume = {13}, journal = {Conservation Letters}, number = {2}, doi = {10.1111/conl.12693}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-204407}, pages = {e12693}, year = {2019}, abstract = {Abstract Recent studies reveal the use of tree cavities by wild honeybee colonies in European forests. This highlights the conservation potential of forests for a highly threatened component of the native entomofauna in Europe, but currently no estimate of potential wild honeybee population sizes exists. Here, we analyzed the tree cavity densities of 106 forest areas across Europe and inferred an expected population size of wild honeybees. Both forest and management types affected the density of tree cavities. Accordingly, we estimated that more than 80,000 wild honeybee colonies could be sustained in European forests. As expected, potential conservation hotspots were identified in unmanaged forests, and, surprisingly, also in other large forest areas across Europe. Our results contribute to the EU policy strategy to halt pollinator declines and reveal the potential of forest areas for the conservation of so far neglected wild honeybee populations in Europe.}, language = {en} } @article{KunzKozjakPavlovic2019, author = {Kunz, Tobias C. and Kozjak-Pavlovic, Vera}, title = {Diverse facets of sphingolipid involvement in bacterial infections}, series = {Frontiers in Cell and Developmental Biology}, volume = {7}, journal = {Frontiers in Cell and Developmental Biology}, number = {203}, doi = {10.3389/fcell.2019.00203}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201757}, year = {2019}, abstract = {Sphingolipids are constituents of the cell membrane that perform various tasks as structural elements and signaling molecules, in addition to regulating many important cellular processes, such as apoptosis and autophagy. In recent years, it has become increasingly clear that sphingolipids and sphingolipid signaling play a vital role in infection processes. In many cases the attachment and uptake of pathogenic bacteria, as well as bacterial development and survival within the host cell depend on sphingolipids. In addition, sphingolipids can serve as antimicrobials, inhibiting bacterial growth and formation of biofilms. This review will give an overview of our current information about these various aspects of sphingolipid involvement in bacterial infections.}, language = {en} } @article{PattschullWalzGruendletal.2019, author = {Pattschull, Grit and Walz, Susanne and Gr{\"u}ndl, Marco and Schwab, Melissa and R{\"u}hl, Eva and Baluapuri, Apoorva and Cindric-Vranesic, Anita and Kneitz, Susanne and Wolf, Elmar and Ade, Carsten P. and Rosenwald, Andreas and von Eyss, Bj{\"o}rn and Gaubatz, Stefan}, title = {The Myb-MuvB complex is required for YAP-dependent transcription of mitotic genes}, series = {Cell Reports}, volume = {27}, journal = {Cell Reports}, number = {12}, doi = {10.1016/j.celrep.2019.05.071}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-202039}, pages = {3533-3546}, year = {2019}, abstract = {YAP and TAZ, downstream effectors of the Hippo pathway, are important regulators of proliferation. Here, we show that the ability of YAP to activate mitotic gene expression is dependent on the Myb-MuvB (MMB) complex, a master regulator of genes expressed in the G2/M phase of the cell cycle. By carrying out genome-wide expression and binding analyses, we found that YAP promotes binding of the MMB subunit B-MYB to the promoters of mitotic target genes. YAP binds to B-MYB and stimulates B-MYB chromatin association through distal enhancer elements that interact with MMB-regulated promoters through chromatin looping. The cooperation between YAP and B-MYB is critical for YAP-mediated entry into mitosis. Furthermore, the expression of genes coactivated by YAP and B-MYB is associated with poor survival of cancer patients. Our findings provide a molecular mechanism by which YAP and MMB regulate mitotic gene expression and suggest a link between two cancer-relevant signaling pathways.}, language = {en} } @article{KhayenkoMaric2019, author = {Khayenko, Vladimir and Maric, Hans Michael}, title = {Targeting GABA\(_A\)R-associated proteins: new modulators, labels and concepts}, series = {Frontiers in Molecular Neuroscience}, volume = {12}, journal = {Frontiers in Molecular Neuroscience}, number = {162}, doi = {10.3389/fnmol.2019.00162}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201876}, year = {2019}, abstract = {γ-aminobutyric acid type A receptors (GABA\(_A\)Rs) are the major mediators of synaptic inhibition in the brain. Aberrant GABA\(_A\)R activity or regulation is observed in various neurodevelopmental disorders, neurodegenerative diseases and mental illnesses, including epilepsy, Alzheimer's and schizophrenia. Benzodiazepines, anesthetics and other pharmaceutics targeting these receptors find broad clinical use, but their inherent lack of receptor subtype specificity causes unavoidable side effects, raising a need for new or adjuvant medications. In this review article, we introduce a new strategy to modulate GABAeric signaling: targeting the intracellular protein interactors of GABA\(_A\)Rs. Of special interest are scaffolding, anchoring and supporting proteins that display high GABA\(_A\)R subtype specificity. Recent efforts to target gephyrin, the major intracellular integrator of GABAergic signaling, confirm that GABA\(_A\)R-associated proteins can be successfully targeted through diverse molecules, including recombinant proteins, intrabodies, peptide-based probes and small molecules. Small-molecule artemisinins and peptides derived from endogenous interactors, that specifically target the universal receptor binding site of gephyrin, acutely affect synaptic GABA\(_A\)R numbers and clustering, modifying neuronal transmission. Interference with GABA\(_A\)R trafficking provides another way to modulate inhibitory signaling. Peptides blocking the binding site of GABA\(_A\)R to AP2 increase the surface concentration of GABA\(_A\)R clusters and enhance GABAergic signaling. Engineering of gephyrin binding peptides delivered superior means to interrogate neuronal structure and function. Fluorescent peptides, designed from gephyrin binders, enable live neuronal staining and visualization of gephyrin in the post synaptic sites with submicron resolution. We anticipate that in the future, novel fluorescent probes, with improved size and binding efficiency, may find wide application in super resolution microscopy studies, enlightening the nanoscale architecture of the inhibitory synapse. Broader studies on GABA\(_A\)R accessory proteins and the identification of the exact molecular binding interfaces and affinities will advance the development of novel GABA\(_A\)R modulators and following in vivo studies will reveal their clinical potential as adjuvant or stand-alone drugs.}, language = {en} } @article{MateosKangKloppetal.2019, author = {Mateos, Mariana and Kang, Du and Klopp, Christophe and Parrinello, Hugues and Garc{\´i}a-Olaz{\´a}bal, Mateo and Schumer, Molly and Jue, Nathaniel K. and Guiguen, Yann and Schartl, Manfred}, title = {Draft genome assembly and annotation of the Gila Topminnow Poeciliopsis occidentalis}, series = {Frontiers in Ecology and Evolution}, volume = {7}, journal = {Frontiers in Ecology and Evolution}, number = {404}, issn = {2296-701X}, doi = {10.3389/fevo.2019.00404}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-190339}, year = {2019}, abstract = {No abstract available.}, language = {en} } @article{YangRajeeveRudeletal.2019, author = {Yang, Manli and Rajeeve, Karthika and Rudel, Thomas and Dandekar, Thomas}, title = {Comprehensive Flux Modeling of Chlamydia trachomatis Proteome and qRT-PCR Data Indicate Biphasic Metabolic Differences Between Elementary Bodies and Reticulate Bodies During Infection}, series = {Frontiers in Microbiology}, volume = {10}, journal = {Frontiers in Microbiology}, number = {2350}, issn = {1664-302X}, doi = {10.3389/fmicb.2019.02350}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-189434}, year = {2019}, abstract = {Metabolic adaptation to the host cell is important for obligate intracellular pathogens such as Chlamydia trachomatis (Ct). Here we infer the flux differences for Ct from proteome and qRT-PCR data by comprehensive pathway modeling. We compare the comparatively inert infectious elementary body (EB) and the active replicative reticulate body (RB) systematically using a genome-scale metabolic model with 321 metabolites and 277 reactions. This did yield 84 extreme pathways based on a published proteomics dataset at three different time points of infection. Validation of predictions was done by quantitative RT-PCR of enzyme mRNA expression at three time points. Ct's major active pathways are glycolysis, gluconeogenesis, glycerol-phospholipid (GPL) biosynthesis (support from host acetyl-CoA) and pentose phosphate pathway (PPP), while its incomplete TCA and fatty acid biosynthesis are less active. The modeled metabolic pathways are much more active in RB than in EB. Our in silico model suggests that EB and RB utilize folate to generate NAD(P)H using independent pathways. The only low metabolic flux inferred for EB involves mainly carbohydrate metabolism. RB utilizes energy -rich compounds to generate ATP in nucleic acid metabolism. Validation data for the modeling include proteomics experiments (model basis) as well as qRT-PCR confirmation of selected metabolic enzyme mRNA expression differences. The metabolic modeling is made fully available here. Its detailed insights and models on Ct metabolic adaptations during infection are a useful modeling basis for future studies.}, language = {en} } @article{CoelhoAlvesMonteiroetal.2019, author = {Coelho, Luis Pedro and Alves, Renato and Monteiro, Paulo and Huerta-Cepas, Jaime and Freitas, Ana Teresa and Bork, Peer}, title = {NG-meta-profiler: fast processing of metagenomes using NGLess, a domain-specific language}, series = {Microbiome}, volume = {7}, journal = {Microbiome}, number = {84}, doi = {10.1186/s40168-019-0684-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-223161}, year = {2019}, abstract = {Background Shotgun metagenomes contain a sample of all the genomic material in an environment, allowing for the characterization of a microbial community. In order to understand these communities, bioinformatics methods are crucial. A common first step in processing metagenomes is to compute abundance estimates of different taxonomic or functional groups from the raw sequencing data. Given the breadth of the field, computational solutions need to be flexible and extensible, enabling the combination of different tools into a larger pipeline. Results We present NGLess and NG-meta-profiler. NGLess is a domain specific language for describing next-generation sequence processing pipelines. It was developed with the goal of enabling user-friendly computational reproducibility. It provides built-in support for many common operations on sequencing data and is extensible with external tools with configuration files. Using this framework, we developed NG-meta-profiler, a fast profiler for metagenomes which performs sequence preprocessing, mapping to bundled databases, filtering of the mapping results, and profiling (taxonomic and functional). It is significantly faster than either MOCAT2 or htseq-count and (as it builds on NGLess) its results are perfectly reproducible. Conclusions NG-meta-profiler is a high-performance solution for metagenomics processing built on NGLess. It can be used as-is to execute standard analyses or serve as the starting point for customization in a perfectly reproducible fashion. NGLess and NG-meta-profiler are open source software (under the liberal MIT license) and can be downloaded from https://ngless.embl.de or installed through bioconda.}, language = {en} } @article{AnnunziatavandeVlekkertWolfetal.2019, author = {Annunziata, Ida and van de Vlekkert, Diantha and Wolf, Elmar and Finkelstein, David and Neale, Geoffrey and Machado, Eda and Mosca, Rosario and Campos, Yvan and Tillman, Heather and Roussel, Martine F. and Weesner, Jason Andrew and Fremuth, Leigh Ellen and Qiu, Xiaohui and Han, Min-Joon and Grosveld, Gerard C. and d'Azzo, Alessandra}, title = {MYC competes with MiT/TFE in regulating lysosomal biogenesis and autophagy through an epigenetic rheostat}, series = {Nature Communications}, volume = {10}, journal = {Nature Communications}, doi = {10.1038/s41467-019-11568-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-221189}, year = {2019}, abstract = {Coordinated regulation of the lysosomal and autophagic systems ensures basal catabolism and normal cell physiology, and failure of either system causes disease. Here we describe an epigenetic rheostat orchestrated by c-MYC and histone deacetylases that inhibits lysosomal and autophagic biogenesis by concomitantly repressing the expression of the transcription factors MiT/TFE and FOXH1, and that of lysosomal and autophagy genes. Inhibition of histone deacetylases abates c-MYC binding to the promoters of lysosomal and autophagy genes, granting promoter occupancy to the MiT/TFE members, TFEB and TFE3, and/or the autophagy regulator FOXH1. In pluripotent stem cells and cancer, suppression of lysosomal and autophagic function is directly downstream of c-MYC overexpression and may represent a hallmark of malignant transformation. We propose that, by determining the fate of these catabolic systems, this hierarchical switch regulates the adaptive response of cells to pathological and physiological cues that could be exploited therapeutically.}, language = {en} } @article{DammertBraegelmannOlsenetal.2019, author = {Dammert, Marcel A. and Br{\"a}gelmann, Johannes and Olsen, Rachelle R. and B{\"o}hm, Stefanie and Monhasery, Niloufar and Whitney, Christopher P. and Chalishazar, Milind D. and Tumbrink, Hannah L. and Guthrie, Matthew R. and Klein, Sebastian and Ireland, Abbie S. and Ryan, Jeremy and Schmitt, Anna and Marx, Annika and Ozretić, Luka and Castiglione, Roberta and Lorenz, Carina and Jachimowicz, Ron D. and Wolf, Elmar and Thomas, Roman K. and Poirier, John T. and B{\"u}ttner, Reinhard and Sen, Triparna and Byers, Lauren A. and Reinhardt, H. Christian and Letai, Anthony and Oliver, Trudy G. and Sos, Martin L.}, title = {MYC paralog-dependent apoptotic priming orchestrates a spectrum of vulnerabilities in small cell lung cancer}, series = {Nature Communications}, volume = {10}, journal = {Nature Communications}, doi = {10.1038/s41467-019-11371-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-223569}, year = {2019}, abstract = {MYC paralogs are frequently activated in small cell lung cancer (SCLC) but represent poor drug targets. Thus, a detailed mapping of MYC-paralog-specific vulnerabilities may help to develop effective therapies for SCLC patients. Using a unique cellular CRISPR activation model, we uncover that, in contrast to MYCN and MYCL, MYC represses BCL2 transcription via interaction with MIZ1 and DNMT3a. The resulting lack of BCL2 expression promotes sensitivity to cell cycle control inhibition and dependency on MCL1. Furthermore, MYC activation leads to heightened apoptotic priming, intrinsic genotoxic stress and susceptibility to DNA damage checkpoint inhibitors. Finally, combined AURK and CHK1 inhibition substantially prolongs the survival of mice bearing MYC-driven SCLC beyond that of combination chemotherapy. These analyses uncover MYC-paralog-specific regulation of the apoptotic machinery with implications for genotype-based selection of targeted therapeutics in SCLC patients.}, language = {en} } @article{DoerkPeterlongoMannermaaetal.2019, author = {D{\"o}rk, Thilo and Peterlongo, Peter and Mannermaa, Arto and Bolla, Manjeet K. and Wang, Qin and Dennis, Joe and Ahearn, Thomas and Andrulis, Irene L. and Anton-Culver, Hoda and Arndt, Volker and Aronson, Kristan J. and Augustinsson, Annelie and Beane Freeman, Laura E. and Beckmann, Matthias W. and Beeghly-Fadiel, Alicia and Behrens, Sabine and Bermisheva, Marina and Blomqvist, Carl and Bogdanova, Natalia V. and Bojesen, Stig E. and Brauch, Hiltrud and Brenner, Hermann and Burwinkel, Barbara and Canzian, Federico and Chan, Tsun L. and Chang-Claude, Jenny and Chanock, Stephen J. and Choi, Ji-Yeob and Christiansen, Hans and Clarke, Christine L. and Couch, Fergus J. and Czene, Kamila and Daly, Mary B. and dos-Santos-Silva, Isabel and Dwek, Miriam and Eccles, Diana M. and Ekici, Arif B. and Eriksson, Mikael and Evans, D. Gareth and Fasching, Peter A. and Figueroa, Jonine and Flyger, Henrik and Fritschi, Lin and Gabrielson, Marike and Gago-Dominguez, Manuela and Gao, Chi and Gapstur, Susan M. and Garc{\´i}a-Closas, Montserrat and Garc{\´i}a-S{\´a}enz, Jos{\´e} A. and Gaudet, Mia M. and Giles, Graham G. and Goldberg, Mark S. and Goldgar, David E. and Guen{\´e}l, Pascal and Haeberle, Lothar and Haimann, Christopher A. and H{\aa}kansson, Niclas and Hall, Per and Hamann, Ute and Hartman, Mikael and Hauke, Jan and Hein, Alexander and Hillemanns, Peter and Hogervorst, Frans B. L. and Hooning, Maartje J. and Hopper, John L. and Howell, Tony and Huo, Dezheng and Ito, Hidemi and Iwasaki, Motoki and Jakubowska, Anna and Janni, Wolfgang and John, Esther M. and Jung, Audrey and Kaaks, Rudolf and Kang, Daehee and Kapoor, Pooja Middha and Khusnutdinova, Elza and Kim, Sung-Won and Kitahara, Cari M. and Koutros, Stella and Kraft, Peter and Kristensen, Vessela N. and Kwong, Ava and Lambrechts, Diether and Le Marchand, Loic and Li, Jingmei and Lindstr{\"o}m, Sara and Linet, Martha and Lo, Wing-Yee and Long, Jirong and Lophatananon, Artitaya and Lubiński, Jan and Manoochehri, Mehdi and Manoukian, Siranoush and Margolin, Sara and Martinez, Elena and Matsuo, Keitaro and Mavroudis, Dimitris and Meindl, Alfons and Menon, Usha and Milne, Roger L. and Mohd Taib, Nur Aishah and Muir, Kenneth and Mulligan, Anna Marie and Neuhausen, Susan L. and Nevanlinna, Heli and Neven, Patrick and Newman, William G. and Offit, Kenneth and Olopade, Olufunmilayo I. and Olshan, Andrew F. and Olson, Janet E. and Olsson, H{\aa}kan and Park, Sue K. and Park-Simon, Tjoung-Won and Peto, Julian and Plaseska-Karanfilska, Dijana and Pohl-Rescigno, Esther and Presneau, Nadege and Rack, Brigitte and Radice, Paolo and Rashid, Muhammad U. and Rennert, Gad and Rennert, Hedy S. and Romero, Atocha and Ruebner, Matthias and Saloustros, Emmanouil and Schmidt, Marjanka K. and Schmutzler, Rita K. and Schneider, Michael O. and Schoemaker, Minouk J. and Scott, Christopher and Shen, Chen-Yang and Shu, Xiao-Ou and Simard, Jaques and Slager, Susan and Smichkoska, Snezhana and Southey, Melissa C. and Spinelli, John J. and Stone, Jennifer and Surowy, Harald and Swerdlow, Anthony J. and Tamimi, Rulla M. and Tapper, William J. and Teo, Soo H. and Terry, Mary Beth and Toland, Amanda E. and Tollenaar, Rob A. E. M. and Torres, Diana and Torres-Mej{\´i}a, Gabriela and Troester, Melissa A. and Truong, Th{\´e}r{\`e}se and Tsugane, Shoichiro and Untch, Michael and Vachon, Celine M. and van den Ouweland, Ans M. W. and van Veen, Elke M. and Vijai, Joseph and Wendt, Camilla and Wolk, Alicja and Yu, Jyh-Cherng and Zheng, Wei and Ziogas, Argyrios and Ziv, Elad and Dunnig, Alison and Pharaoh, Paul D. P. and Schindler, Detlev and Devilee, Peter and Easton, Douglas F.}, title = {Two truncating variants in FANCC and breast cancer risk}, series = {Scientific Reports}, volume = {9}, journal = {Scientific Reports}, organization = {ABCTB Investigators, NBCS Collaborators}, doi = {10.1038/s41598-019-48804-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-222838}, year = {2019}, abstract = {Fanconi anemia (FA) is a genetically heterogeneous disorder with 22 disease-causing genes reported to date. In some FA genes, monoallelic mutations have been found to be associated with breast cancer risk, while the risk associations of others remain unknown. The gene for FA type C, FANCC, has been proposed as a breast cancer susceptibility gene based on epidemiological and sequencing studies. We used the Oncoarray project to genotype two truncating FANCC variants (p.R185X and p.R548X) in 64,760 breast cancer cases and 49,793 controls of European descent. FANCC mutations were observed in 25 cases (14 with p.R185X, 11 with p.R548X) and 26 controls (18 with p.R185X, 8 with p.R548X). There was no evidence of an association with the risk of breast cancer, neither overall (odds ratio 0.77, 95\%CI 0.44-1.33, p = 0.4) nor by histology, hormone receptor status, age or family history. We conclude that the breast cancer risk association of these two FANCC variants, if any, is much smaller than for BRCA1, BRCA2 or PALB2 mutations. If this applies to all truncating variants in FANCC it would suggest there are differences between FA genes in their roles on breast cancer risk and demonstrates the merit of large consortia for clarifying risk associations of rare variants.}, language = {en} } @article{SteuerCostaVanderAuweraGlocketal.2019, author = {Steuer Costa, Wagner and Van der Auwera, Petrus and Glock, Caspar and Liewald, Jana F. and Bach, Maximilian and Sch{\"u}ler, Christina and Wabnig, Sebastian and Oranth, Alexandra and Masurat, Florentin and Bringmann, Henrik and Schoofs, Liliane and Stelzer, Ernst H. K. and Fischer, Sabine C. and Gottschalk, Alexander}, title = {A GABAergic and peptidergic sleep neuron as a locomotion stop neuron with compartmentalized Ca2+ dynamics}, series = {Nature Communications}, volume = {10}, journal = {Nature Communications}, doi = {10.1038/s41467-019-12098-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-223273}, year = {2019}, abstract = {Animals must slow or halt locomotion to integrate sensory inputs or to change direction. In Caenorhabditis elegans, the GABAergic and peptidergic neuron RIS mediates developmentally timed quiescence. Here, we show RIS functions additionally as a locomotion stop neuron. RIS optogenetic stimulation caused acute and persistent inhibition of locomotion and pharyngeal pumping, phenotypes requiring FLP-11 neuropeptides and GABA. RIS photoactivation allows the animal to maintain its body posture by sustaining muscle tone, yet inactivating motor neuron oscillatory activity. During locomotion, RIS axonal Ca2+ signals revealed functional compartmentalization: Activity in the nerve ring process correlated with locomotion stop, while activity in a branch correlated with induced reversals. GABA was required to induce, and FLP-11 neuropeptides were required to sustain locomotion stop. RIS attenuates neuronal activity and inhibits movement, possibly enabling sensory integration and decision making, and exemplifies dual use of one cell across development in a compact nervous system.}, language = {en} } @article{KrausBrinkSiegel2019, author = {Kraus, Amelie J. and Brink, Benedikt G. and Siegel, T. Nicolai}, title = {Efficient and specific oligo-based depletion of rRNA}, series = {Scientific Reports}, volume = {9}, journal = {Scientific Reports}, doi = {10.1038/s41598-019-48692-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-224829}, year = {2019}, abstract = {In most organisms, ribosomal RNA (rRNA) contributes to >85\% of total RNA. Thus, to obtain useful information from RNA-sequencing (RNA-seq) analyses at reasonable sequencing depth, typically, mature polyadenylated transcripts are enriched or rRNA molecules are depleted. Targeted depletion of rRNA is particularly useful when studying transcripts lacking a poly(A) tail, such as some non-coding RNAs (ncRNAs), most bacterial RNAs and partially degraded or immature transcripts. While several commercially available kits allow effective rRNA depletion, their efficiency relies on a high degree of sequence homology between oligonucleotide probes and the target RNA. This restricts the use of such kits to a limited number of organisms with conserved rRNA sequences. In this study we describe the use of biotinylated oligos and streptavidin-coated paramagnetic beads for the efficient and specific depletion of trypanosomal rRNA. Our approach reduces the levels of the most abundant rRNA transcripts to less than 5\% with minimal off-target effects. By adjusting the sequence of the oligonucleotide probes, our approach can be used to deplete rRNAs or other abundant transcripts independent of species. Thus, our protocol provides a useful alternative for rRNA removal where enrichment of polyadenylated transcripts is not an option and commercial kits for rRNA are not available.}, language = {en} } @article{KimAmoresKangetal.2019, author = {Kim, Bo-Mi and Amores, Angel and Kang, Seunghyun and Ahn, Do-Hwan and Kim, Jin-Hyoung and Kim, Il-Chan and Lee, Jun Hyuck and Lee, Sung Gu and Lee, Hyoungseok and Lee, Jungeun and Kim, Han-Woo and Desvignes, Thomas and Batzel, Peter and Sydes, Jason and Titus, Tom and Wilson, Catherine A. and Catchen, Julian M. and Warren, Wesley C. and Schartl, Manfred and Detrich, H. William III and Postlethwait, John H. and Park, Hyun}, title = {Antarctic blackfin icefish genome reveals adaptations to extreme environments}, series = {Nature Ecology \& Evolution}, volume = {3}, journal = {Nature Ecology \& Evolution}, doi = {10.1038/s41559-019-0812-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-325811}, pages = {469-478}, year = {2019}, abstract = {Icefishes (suborder Notothenioidei; family Channichthyidae) are the only vertebrates that lack functional haemoglobin genes and red blood cells. Here, we report a high-quality genome assembly and linkage map for the Antarctic blackfin icefish Chaenocephalus aceratus, highlighting evolved genomic features for its unique physiology. Phylogenomic analysis revealed that Antarctic fish of the teleost suborder Notothenioidei, including icefishes, diverged from the stickleback lineage about 77 million years ago and subsequently evolved cold-adapted phenotypes as the Southern Ocean cooled to sub-zero temperatures. Our results show that genes involved in protection from ice damage, including genes encoding antifreeze glycoprotein and zona pellucida proteins, are highly expanded in the icefish genome. Furthermore, genes that encode enzymes that help to control cellular redox state, including members of the sod3 and nqo1 gene families, are expanded, probably as evolutionary adaptations to the relatively high concentration of oxygen dissolved in cold Antarctic waters. In contrast, some crucial regulators of circadian homeostasis (cry and per genes) are absent from the icefish genome, suggesting compromised control of biological rhythms in the polar light environment. The availability of the icefish genome sequence will accelerate our understanding of adaptation to extreme Antarctic environments.}, language = {en} }