@article{KarlNandiniColacoSchulteetal.2019, author = {Karl, Franziska and Nandini Cola{\c{c}}o, Maria B. and Schulte, Annemarie and Sommer, Claudia and {\"U}{\c{c}}eyler, Nurcan}, title = {Affective and cognitive behavior is not altered by chronic constriction injury in B7-H1 deficient and wildtype mice}, series = {BMC Neuroscience}, volume = {20}, journal = {BMC Neuroscience}, doi = {10.1186/s12868-019-0498-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-200540}, pages = {16}, year = {2019}, abstract = {Background Chronic neuropathic pain is often associated with anxiety, depressive symptoms, and cognitive impairment with relevant impact on patients` health related quality of life. To investigate the influence of a pro-inflammatory phenotype on affective and cognitive behavior under neuropathic pain conditions, we assessed mice deficient of the B7 homolog 1 (B7-H1), a major inhibitor of inflammatory response. Results Adult B7-H1 ko mice and wildtype littermates (WT) received a chronic constriction injury (CCI) of the sciatic nerve, and we assessed mechanical and thermal sensitivity at selected time points. Both genotypes developed mechanical (p < 0.001) and heat hypersensitivity (p < 0.01) 7, 14, and 20 days after surgery. We performed three tests for anxiety-like behavior: the light-dark box, the elevated plus maze, and the open field. As supported by the results of these tests for anxiety-like behavior, no relevant differences were found between genotypes after CCI. Depression-like behavior was assessed using the forced swim test. Also, CCI had no effect on depression like behavior. For cognitive behavior, we applied the Morris water maze for spatial learning and memory and the novel object recognition test for object recognition, long-, and short-term memory. Learning and memory did not differ in B7-H1 ko and WT mice after CCI. Conclusions Our study reveals that the impact of B7-H1 on affective-, depression-like- and learning-behavior, and memory performance might play a subordinate role in mice after nerve lesion.}, language = {en} } @article{EvdokimovFrankKlitschetal.2019, author = {Evdokimov, Dimitar and Frank, Johanna and Klitsch, Alexander and Unterecker, Stefan and Warrings, Bodo and Serra, Jordi and Papagianni, Aikaterini and Saffer, Nadine and Meyer zu Altenschildesche, Caren and Kampik, Daniel and Malik, Rayaz A. and Sommer, Claudia and {\"U}ceyler, Nurcan}, title = {Reduction of skin innervation is associated with a severe fibromyalgia phenotype}, series = {Annals of Neurology}, volume = {86}, journal = {Annals of Neurology}, number = {4}, doi = {10.1002/ana.25565}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-206168}, pages = {504-516}, year = {2019}, abstract = {Objective: To assess patterns and impact of small nerve fiber dysfunction and pathology in patients with fibromyalgia syndrome (FMS). Methods: One hundred seventeen women with FMS underwent neurological examination, questionnaire assessment, neurophysiology assessment, and small fiber tests: skin punch biopsy, corneal confocal microscopy, microneurography, quantitative sensory testing including C-tactile afferents, and pain-related evoked potentials. Data were compared with those of women with major depressive disorder and chronic widespread pain (MD-P) and healthy women. Results: Intraepidermal nerve fiber density (IENFD) was reduced at different biopsy sites in 63\% of FMS patients (MDP: 10\%, controls: 18\%; p < 0.001 for each). We found 4 patterns of skin innervation in FMS: normal, distally reduced, proximally reduced, and both distally and proximally reduced (p < 0.01 for each compared to controls). Microneurography revealed initial activity-dependent acceleration of conduction velocity upon low frequencies of stimulation in 1A fibers, besides 1B fiber spontaneous activity and mechanical sensitization in FMS patients. FMS patients had elevated warm detection thresholds (p < 0.01), impaired C-tactile afferents (p < 0.05), and reduced amplitudes (p < 0.001) of pain-related evoked potentials compared to controls. Compared to FMS patients with normal skin innervation, those with generalized IENFD reduction had higher pain intensity and impairment due to pain, higher disease burden, more stabbing pain and paresthesias, and more anxiety (p < 0.05 for each). FMS patients with generalized IENFD reduction also had lower corneal nerve fiber density (p < 0.01) and length (p < 0.05). Interpretation: The extent of small fiber pathology is related to symptom severity in FMS. This knowledge may have implications for the diagnostic classification and treatment of patients with FMS.}, language = {en} } @article{KarlWussmannKressetal.2019, author = {Karl, Franziska and Wußmann, Maximiliane and Kreß, Luisa and Malzacher, Tobias and Fey, Phillip and Groeber-Becker, Florian and {\"U}{\c{c}}eyler, Nurcan}, title = {Patient-derived in vitro skin models for investigation of small fiber pathology}, series = {Annals of Clinical and Translational Neurology}, volume = {6}, journal = {Annals of Clinical and Translational Neurology}, number = {9}, doi = {10.1002/acn3.50871}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201649}, pages = {1797-1806}, year = {2019}, abstract = {Objective To establish individually expandable primary fibroblast and keratinocyte cultures from 3-mm skin punch biopsies for patient-derived in vitro skin models to investigate of small fiber pathology. Methods We obtained 6-mm skin punch biopsies from the calf of two patients with small fiber neuropathy (SFN) and two healthy controls. One half (3 mm) was used for diagnostic intraepidermal nerve fiber density (IENFD). From the second half, we isolated and cultured fibroblasts and keratinocytes. Cells were used to generate patient-derived full-thickness three-dimensional (3D) skin models containing a dermal and epidermal component. Cells and skin models were characterized morphologically, immunocyto- and -histochemically (vimentin, cytokeratin (CK)-10, CK 14, ki67, collagen1, and procollagen), and by electrical impedance. Results Distal IENFD was reduced in the SFN patients (2 fibers/mm each), while IENFD was normal in the controls (8 fibers/mm, 7 fibers/mm). Two-dimensional (2D) cultured skin cells showed normal morphology, adequate viability, and proliferation, and expressed cell-specific markers without relevant difference between SFN patient and healthy control. Using 2D cultured fibroblasts and keratinocytes, we obtained subject-derived 3D skin models. Morphology of the 3D model was analogous to the respective skin biopsy specimens. Both, the dermal and the epidermal layer carried cell-specific markers and showed a homogenous expression of extracellular matrix proteins. Interpretation Our protocol allows the generation of disease-specific 2D and 3D skin models, which can be used to investigate the cross-talk between skin cells and sensory neurons in small fiber pathology.}, language = {en} } @article{SaudekCahovaHavrdovaetal.2018, author = {Saudek, František and Cahov{\´a}, Monika and Havrdov{\´a}, Terezie and Zacharovov{\´a}, Kl{\´a}ra and Daňkov{\´a}, Helena and Voska, Luděk and L{\´a}nsk{\´a}, Věra and {\"U}{\c{c}}eyler, Nurcan and Sommer, Claudia}, title = {Preserved Expression of Skin Neurotrophic Factors in Advanced Diabetic Neuropathy Does Not Lead to Neural Regeneration despite Pancreas and Kidney Transplantation}, series = {Journal of Diabetes Research}, volume = {2018}, journal = {Journal of Diabetes Research}, number = {2309108}, doi = {10.1155/2018/2309108}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-227469}, pages = {1-11}, year = {2018}, abstract = {Diabetic peripheral neuropathy (DPN) is a common complication of diabetes with potential severe consequences. Its pathogenesis involves hyperglycemia-linked mechanisms, which may include changes in the expression of neurotrophic growth factors. We analyzed the expression of 29 factors potentially related to nerve degeneration and regeneration in skin biopsies from 13 type 1 diabetic pancreas and kidney recipients with severe DPN including severe depletion of intraepidermal nerve fibers (IENF) in lower limb skin biopsies (group Tx1 1st examination). The investigation was repeated after a median 28-month period of normoglycemia achieved by pancreas transplantation (group Tx1 2nd examination). The same tests were performed in 13 stable normoglycemic pancreas and kidney recipients 6-12 years posttransplantation (group Tx2), in 12 matched healthy controls (group HC), and in 12 type 1 diabetic subjects without severe DPN (group DM). Compared to DM and HC groups, we found a significantly higher (p < 0.05-0.001) expression of NGF (nerve growth factor), NGFR (NGF receptor), NTRK1 (neurotrophic receptor tyrosine kinase 1), GDNF (glial cell-derived neurotrophic factor), GFRA1 (GDNF family receptor alpha 1), and GFAP (glial fibrillary acidic protein) in both transplant groups (Tx1 and Tx2). Enhanced expression of these factors was not normalized following the median 28-month period of normoglycemia (Tx1 2nd examination) and negatively correlated with IENF density and with electrophysiological indices of DPN (vibration perception threshold, electromyography, and autonomic tests). In contrast to our expectation, the expression of most of 29 selected factors related to neural regeneration was comparable in subjects with severe peripheral nerve fiber depletion and healthy controls and the expression of six factors was significantly upregulated. These findings may be important for better understanding the pathophysiology of nerve regeneration and for the development of intervention strategies.}, language = {en} } @article{LueningschroerBinottiDombertetal.2017, author = {L{\"u}ningschr{\"o}r, Patrick and Binotti, Beyenech and Dombert, Benjamin and Heimann, Peter and Perez-Lara, Angel and Slotta, Carsten and Thau-Habermann, Nadine and von Collenberg, Cora R. and Karl, Franziska and Damme, Markus and Horowitz, Arie and Maystadt, Isabelle and F{\"u}chtbauer, Annette and F{\"u}chtbauer, Ernst-Martin and Jablonka, Sibylle and Blum, Robert and {\"U}{\c{c}}eyler, Nurcan and Petri, Susanne and Kaltschmidt, Barbara and Jahn, Reinhard and Kaltschmidt, Christian and Sendtner, Michael}, title = {Plekhg5-regulated autophagy of synaptic vesicles reveals a pathogenic mechanism in motoneuron disease}, series = {Nature Communications}, volume = {8}, journal = {Nature Communications}, number = {678}, doi = {10.1038/s41467-017-00689-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170048}, year = {2017}, abstract = {Autophagy-mediated degradation of synaptic components maintains synaptic homeostasis but also constitutes a mechanism of neurodegeneration. It is unclear how autophagy of synaptic vesicles and components of presynaptic active zones is regulated. Here, we show that Pleckstrin homology containing family member 5 (Plekhg5) modulates autophagy of synaptic vesicles in axon terminals of motoneurons via its function as a guanine exchange factor for Rab26, a small GTPase that specifically directs synaptic vesicles to preautophagosomal structures. Plekhg5 gene inactivation in mice results in a late-onset motoneuron disease, characterized by degeneration of axon terminals. Plekhg5-depleted cultured motoneurons show defective axon growth and impaired autophagy of synaptic vesicles, which can be rescued by constitutively active Rab26. These findings define a mechanism for regulating autophagy in neurons that specifically targets synaptic vesicles. Disruption of this mechanism may contribute to the pathophysiology of several forms of motoneuron disease.}, language = {en} } @article{KarlGriesshammerUeceyleretal.2017, author = {Karl, Franziska and Grießhammer, Anne and {\"U}{\c{c}}eyler, Nurcan and Sommer, Claudia}, title = {Differential Impact of miR-21 on Pain and Associated Affective and Cognitive Behavior after Spared Nerve Injury in B7-H1 ko Mouse}, series = {Frontiers in Molecular Neuroscience}, volume = {10}, journal = {Frontiers in Molecular Neuroscience}, number = {219}, doi = {10.3389/fnmol.2017.00219}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170722}, year = {2017}, abstract = {MicroRNAs (miRNAs) are increasingly recognized as regulators of immune and neuronal gene expression and are potential master switches in neuropathic pain pathophysiology. miR-21 is a promising candidate that may link the immune and the pain system. To investigate the pathophysiological role of miR-21 in neuropathic pain, we assessed mice deficient of B7 homolog 1 (B7-H1), a major inhibitor of inflammatory responses. In previous studies, an upregulation of miR-21 had been shown in mouse lymphocytes. Young (8 weeks), middle-aged (6 months), and old (12 months) B7-H1 ko mice and wildtype littermates (WT) received a spared nerve injury (SNI). We assessed thermal withdrawal latencies and mechanical withdrawal thresholds. Further, we performed tests for anxiety-like and cognitive behavior. Quantitative real time PCR was used to determine miR-21 relative expression in peripheral nerves, and dorsal root ganglia (DRG) at distinct time points after SNI. We found mechanical hyposensitivity with increasing age of na{\"i}ve B7-H1 ko mice. Young and middle-aged B7-H1 ko mice were more sensitive to mechanical stimuli compared to WT mice (young: p < 0.01, middle-aged: p < 0.05). Both genotypes developed mechanical and heat hypersensitivity (p < 0.05) after SNI, without intergroup differences. No relevant differences were found after SNI in three tests for anxiety like behavior in B7-H1 ko and WT mice. Also, SNI had no effect on cognition. B7-H1 ko and WT mice showed a higher miR-21 expression (p < 0.05) and invasion of macrophages and T cells in the injured nerve 7 days after SNI without intergroup differences. Our study reveals that increased miR-21 expression in peripheral nerves after SNI is associated with reduced mechanical and heat withdrawal thresholds. These results point to a role of miR-21 in the pathophysiology of neuropathic pain, while affective behavior and cognition seem to be spared. Contrary to expectations, B7-H1 ko mice did not show higher miR-21 expression than WT mice, thus, a B7-H1 knockout may be of limited relevance for the study of miR-21 related pain.}, language = {en} } @article{HofmannKarlSommeretal.2017, author = {Hofmann, Lukas and Karl, Franziska and Sommer, Claudia and {\"U}{\c{c}}eyler, Nurcan}, title = {Affective and cognitive behavior in the alpha-galactosidase A deficient mouse model of Fabry disease}, series = {PLoS ONE}, volume = {12}, journal = {PLoS ONE}, number = {6}, doi = {10.1371/journal.pone.0180601}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170745}, pages = {e0180601}, year = {2017}, abstract = {Fabry disease is an X-linked inherited lysosomal storage disorder with intracellular accumulation of globotriaosylceramide (Gb3) due to α-galactosidase A (α-Gal A) deficiency. Fabry patients frequently report of anxiety, depression, and impaired cognitive function. We characterized affective and cognitive phenotype of male mice with α-Gal A deficiency (Fabry KO) and compared results with those of age-matched male wildtype (WT) littermates. Young (3 months) and old (≥ 18 months) mice were tested in the na{\"i}ve state and after i.pl. injection of complete Freund`s adjuvant (CFA) as an inflammatory pain model. We used the elevated plus maze (EPM), the light-dark box (LDB) and the open field test (OF) to investigate anxiety-like behavior. The forced swim test (FST) and Morris water maze (MWM) were applied to assess depressive-like and learning behavior. The EPM test revealed no intergroup difference for anxiety-like behavior in na{\"i}ve young and old Fabry KO mice compared to WT littermates, except for longer time spent in open arms of the EPM for young WT mice compared to young Fabry KO mice (p<0.05). After CFA injection, young Fabry KO mice showed increased anxiety-like behavior compared to young WT littermates (p<0.05) and na{\"i}ve young Fabry KO mice (p<0.05) in the EPM as reflected by shorter time spent in EPM open arms. There were no relevant differences in the LDB and the OF test, except for longer time spent in the center zone of the OF by young WT mice compared to young Fabry KO mice (p<0.05). Complementary to this, depression-like and learning behavior were not different between genotypes and age-groups, except for the expectedly lower memory performance in older age-groups compared to young mice. Our results indicate that genetic influences on affective and cognitive symptoms in FD may be of subordinate relevance, drawing attention to potential influences of environmental and epigenetic factors.}, language = {en} } @article{UeceylerBikoHoseetal.2016, author = {{\"U}{\c{c}}eyler, Nurcan and Biko, Lydia and Hose, Dorothea and Hoffmann, Lukas and Sommer, Claudia}, title = {Comprehensive and differential long-term characterization of the alpha-galactosidase A deficient mouse model of Fabry disease focusing on the sensory system and pain development}, series = {Molecular Pain}, volume = {12}, journal = {Molecular Pain}, number = {1744806916646370}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-147562}, year = {2016}, abstract = {Fabry disease is an X-linked lysosomal storage disorder due to impaired activity of alpha-galactosidase A with intracellular accumulation of globotriaosylceramide. Associated small fiber pathology leads to characteristic pain in Fabry disease. We systematically assessed sensory system, physical activity, metabolic parameters, and morphology of male and female mice with alpha-galactosidase A deficiency (Fabry ko) from 2 to 27 months of age and compared results with those of age- and gender-matched wild-type littermates of C57Bl/6J background. Results From the age of two months, male and female Fabry mice showed mechanical hypersensitivity (p < 0.001 each) compared to wild-type littermates. Young Fabry ko mice of both genders were hypersensitive to heat stimulation (p < 0.01) and developed heat hyposensitivity with aging (p < 0.05), while cold hyposensitivity was present constantly in young (p < 0.01) and old (p < 0.05) Fabry ko mice compared to wild-type littermates. Stride angle increased only in male Fabry ko mice with aging (p < 0.01) in comparison to wild-type littermates. Except for young female mice, male (p < 0.05) and female (p < 0.01) Fabry ko mice had a higher body weight than wild-type littermates. Old male Fabry ko mice were physically less active than their wild-type littermates (p < 0.05), had lower chow intake (p < 0.001), and lost more weight (p < 0.001) in a one-week treadmill experiment than wild-type littermates. Also, Fabry ko mice showed spontaneous pain protective behavior and developed orofacial dysmorphism resembling patients with Fabry disease. Conclusions. Mice with alpha-galactosidase A deficiency show age-dependent and distinct deficits of the sensory system. alpha-galactosidase A-deficient mice seem to model human Fabry disease and may be helpful when studying the pathophysiology of Fabry-associated pain.}, language = {en} } @article{UeceylerSchaeferMackenrodtetal.2016, author = {{\"U}{\c{c}}eyler, Nurcan and Sch{\"a}fer, Kristina A. and Mackenrodt, Daniel and Sommer, Claudia and M{\"u}llges, Wolfgang}, title = {High-Resolution Ultrasonography of the Superficial Peroneal Motor and Sural Sensory Nerves May Be a Non-invasive Approach to the Diagnosis of Vasculitic Neuropathy}, series = {Frontiers in Neurology}, volume = {7}, journal = {Frontiers in Neurology}, number = {48}, doi = {10.3389/fneur.2016.00048}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-146671}, year = {2016}, abstract = {High-resolution ultrasonography (HRUS) is an emerging new tool in the investigation of peripheral nerves. We set out to assess the utility of HRUS performed at lower extremity nerves in peripheral neuropathies. Nerves of 26 patients with polyneuropathies of different etiologies and 26 controls were investigated using HRUS. Patients underwent clinical, laboratory, electrophysiological assessment, and a diagnostic sural nerve biopsy as part of the routine work-up. HRUS was performed at the sural, tibial, and the common, superficial, and deep peroneal nerves. The superficial peroneal nerve longitudinal diameter (LD) distinguished best between the groups: patients with immune-mediated neuropathies (n = 13, including six with histology-proven vasculitic neuropathy) had larger LD compared to patients with non-immune-mediated neuropathies (p < 0.05) and to controls (p < 0.001). Among all subgroups, patients with vasculitic neuropathy showed the largest superficial peroneal nerve LD (p < 0.001) and had a larger sural nerve cross-sectional area when compared with disease controls (p < 0.001). Enlargement of the superficial peroneal and sural nerves as detected by HRUS may be a useful additional finding in the differential diagnosis of vasculitic and other immune-mediated neuropathies.}, language = {en} } @article{OderUeceylerLiuetal.2016, author = {Oder, Daniel and {\"U}ceyler, Nurcan and Liu, Dan and Hu, Kai and Petritsch, Bernhard and Sommer, Claudia and Ertl, Georg and Wanner, Christoph and Nordbeck, Peter}, title = {Organ manifestations and long-term outcome of Fabry disease in patients with the GLA haplotype D313Y}, series = {BMJ Open}, volume = {6}, journal = {BMJ Open}, doi = {10.1136/bmjopen-2015-010422}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-161210}, pages = {e010422}, year = {2016}, abstract = {Objectives: The severity of Fabry disease is dependent on the type of mutation in the α-galactosidase A (AgalA) encoding gene (GLA). This study focused on the impact of the GLA haplotype D313Y on long-term organ involvement and function. Setting and participants: In this monocentric study, all participants presenting with the D313Y haplotype between 2001 and 2015 were comprehensively clinically investigated at baseline and during a 4-year follow-up if available. Five females and one male were included. Primary and secondary outcome measures: Cardiac, nephrological, neurological, laboratory and quality of life data. Results: AgalA enzyme activity in leucocytes (0.3±0.9 nmol/min/mg protein (mean±SD)) and serum lyso-Gb3 (0.6±0.3 ng/mL at baseline) were in normal range in all patients. Cardiac morphology and function were normal (left-ventricular (LV) ejection fraction 66±8\%; interventricular septum 7.7±1.4 mm; LV posterior wall 7.5±1.4 mm; normalised LV mass in MRI 52±9 g/m2; LV global longitudinal strain -21.6±1.9\%) and there were no signs of myocardial fibrosis in cardiac MRI. Cardiospecific biomarkers were also in normal range. Renal function was not impaired (estimated glomerular filtration rate MDRD 103±15 mL/min; serum-creatinine 0.75±0.07 mg/dL; cystatin-c 0.71±0.12 mg/L). One female patient (also carrying a Factor V Leiden mutation) had a transitory ischaemic attack. One patient showed white matter lesions in brain MRI, but none had Fabry-associated pain attacks, pain crises, evoked pain or permanent pain. Health-related quality of life analysis revealed a reduction in individual well-being. At long-term follow-up after 4 years, no significant change was seen in any parameter. Conclusions: The results of the current study suggest that the D313Y genotype does not lead to severe organ manifestations as seen in genotypes known to be causal for classical FD."}, language = {en} }