@unpublished{BoehnkeDellermannCeliketal.2018, author = {B{\"o}hnke, Julian and Dellermann, Theresa and Celik, Mehmet Ali and Krummenacher, Ivo and Dewhurst, Rian D. and Demeshko, Serhiy and Ewing, William C. and Hammond, Kai and Heß, Merlin and Bill, Eckhard and Welz, Eileen and R{\"o}hr, Merle I. S. and Mitric, Roland and Engels, Bernd and Meyer, Franc and Braunschweig, Holger}, title = {Isolation of diradical products of twisted double bonds}, series = {Nature Communications}, journal = {Nature Communications}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-160248}, year = {2018}, abstract = {Molecules containing multiple bonds between atoms—most often in the form of olefins—are ubiquitous in nature, commerce, and science, and as such have a huge impact on everyday life. Given their prominence, over the last few decades, frequent attempts have been made to perturb the structure and reactivity of multiply-bound species through bending and twisting. However, only modest success has been achieved in the quest to completely twist double bonds in order to homolytically cleave the associated π bond. Here, we present the isolation of double-bond-containing species based on boron, as well as their fully twisted diradical congeners, by the incorporation of attached groups with different electronic properties. The compounds comprise a structurally authenticated set of diamagnetic multiply-bound and diradical singly-bound congeners of the same class of compound.}, language = {en} } @article{BoehnkeDellermannCeliketal.2018, author = {B{\"o}hnke, Julian and Dellermann, Theresa and Celik, Mehmet Ali and Krummenacher, Ivo and Dewhurst, Rian D. and Demeshko, Serhiy and Ewing, William C. and Hammond, Kai and Heß, Merlin and Bill, Eckhard and Welz, Eileen and R{\"o}hr, Merle I. S. and Mitric, Roland and Engels, Bernd and Meyer, Franc and Braunschweig, Holger}, title = {Isolation of diborenes and their 90°-twisted diradical congeners}, series = {Nature Communications}, volume = {9}, journal = {Nature Communications}, number = {Article number: 1197}, doi = {10.1038/s41467-018-02998-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-160431}, year = {2018}, abstract = {Molecules containing multiple bonds between atoms—most often in the form of olefins—are ubiquitous in nature, commerce, and science, and as such have a huge impact on everyday life. Given their prominence, over the last few decades, frequent attempts have been made to perturb the structure and reactivity of multiply-bound species through bending and twisting. However, only modest success has been achieved in the quest to completely twist double bonds in order to homolytically cleave the associated π bond. Here, we present the isolation of double-bond-containing species based on boron, as well as their fully twisted diradical congeners, by the incorporation of attached groups with different electronic properties. The compounds comprise a structurally authenticated set of diamagnetic multiply-bound and diradical singly-bound congeners of the same class of compound.}, language = {en} } @article{BruneckerMuessigArrowsmithetal.2020, author = {Brunecker, Carina and M{\"u}ssig, Jonas H. and Arrowsmith, Merle and Fantuzzi, Felipe and Stoy, Andreas and B{\"o}hnke, Julian and Hofmann, Alexander and Bertermann, R{\"u}diger and Engels, Bernd and Braunschweig, Holger}, title = {Boranediyl- and Diborane(4)-1,2-diyl-Bridged Platinum A-Frame Complexes}, series = {Chemistry - A European Journal}, volume = {26}, journal = {Chemistry - A European Journal}, number = {39}, doi = {10.1002/chem.202001168}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-214707}, pages = {8518 -- 8523}, year = {2020}, abstract = {Diplatinum A-frame complexes with a bridging (di)boron unit in the apex position were synthesized in a single step by the double oxidative addition of dihalo(di)borane precursors at a bis(diphosphine)-bridged Pt\(^{0}\)\(_{2}\) complex. While structurally analogous to well-known μ-borylene complexes, in which delocalized dative three-center-two-electron M-B-M bonding prevails, theoretical investigations into the nature of Pt-B bonding in these A-frame complexes show them to be rare dimetalla(di)boranes displaying two electron-sharing Pt-B σ-bonds. This is experimentally reflected in the low kinetic stability of these compounds, which are prone to loss of the (di)boron bridgehead unit.}, language = {en} }