@article{UllmannBuedelBaumhaueretal.2016, author = {Ullmann, Tobias and B{\"u}del, Christian and Baumhauer, Roland and Padashi, Majid}, title = {Sentinel-1 SAR Data Revealing Fluvial Morphodynamics in Damghan (Iran): Amplitude and Coherence Change Detection}, series = {International Journal of Earth Science and Geophysics}, volume = {2}, journal = {International Journal of Earth Science and Geophysics}, number = {1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-147863}, pages = {007}, year = {2016}, abstract = {The Sentinel-1 Satellite (S-1) of ESA's Copernicus Mission delivers freely available C-Band Synthetic Aperture Radar (SAR) data that are suited for interferometric applications (InSAR). The high geometric resolution of less than fifteen meter and the large coverage offered by the Interferometric Wide Swath mode (IW) point to new perspectives on the comprehension and understanding of surface changes, the quantification and monitoring of dynamic processes, especially in arid regions. The contribution shows the application of S-1 intensities and InSAR coherences in time series analysis for the delineation of changes related to fluvial morphodynamics in Damghan, Iran. The investigations were carried out for the period from April to October 2015 and exhibit the potential of the S-1 data for the identification of surface disturbances, mass movements and fluvial channel activity in the surroundings of the Damghan Playa. The Amplitude Change Detection highlighted extensive material movement and accumulation - up to sizes of more than 4,000 m in width - in the east of the Playa via changes in intensity. Further, the Coherence Change Detection technique was capable to indicate small-scale channel activity of the drainage system that was neither recognizable in the S-1 intensity nor the multispectral Landsat-8 data. The run off caused a decorrelation of the SAR signals and a drop in coherence. Seen from a morphodynamic point of view, the results indicated a highly dynamic system and complex tempo-spatial patterns were observed that will be subject of future analysis. Additionally, the study revealed the necessity to collect independent reference data on fluvial activity in order to train and adjust the change detector.}, language = {en} } @article{TrappeBuedelMeisteretal.2022, author = {Trappe, Julian and B{\"u}del, Christian and Meister, Julia and Baumhauer, Roland}, title = {Combining geophysical and geomorphological data to reconstruct the development of relief of a medieval castle site in the Spessart low mountain range, Germany}, series = {Earth Surface Processes and Landforms}, volume = {47}, journal = {Earth Surface Processes and Landforms}, number = {1}, doi = {10.1002/esp.5242}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-257433}, pages = {228-241}, year = {2022}, abstract = {Within the Spessart low mountain range in central Germany, numerous castle ruins of the 13th century ce exist. Their construction and destruction were often determined by the struggle for political and economic supremacy in the region and for control over the Spessart's natural resources. Wahlmich Castle is located in a relatively uncommon strategic and geomorphological position, characterized by a fairly remote position and atypical rough relief. In order to reconstruct the local relief development and possible human impact, a multi-method approach was applied combining two-dimensional geoelectrical measurements, geomorphological mapping and stratigraphic-sedimentological investigations. This provides new insights into the influence of landscape characteristics on choices of castle locations. The combined geoelectrical, geomorphological and stratigraphic-sedimentological data show that the rough relief is of natural origin and influenced by regional faulting, which triggered sliding and slumping as well as weathering and dissection of the surface deposits. The rough relief and the lithology permitted intensive land use and building activities. However, the location of the castle offered access to and possibly control over important medieval traffic routes and also represented certain ownership claims in the Aschaff River valley. The economic situation combined with rivalry between different elites led to the castle being built in a geomorphological challenging and strategically less valuable location. Focusing on castles located in rare and challenging geomorphological positions may therefore lead to a better understanding of castle siting in the future.}, language = {en} }