@article{SchwarzHameisterGessleretal.1994, author = {Schwarz, Klaus and Hameister, Horst and Gessler, Manfred and Grzeschik, Karl-Heinz and Hansen-Hagge, Thomas E. and Bartram, Claus R.}, title = {Confirmation of the localization of the human recombination activating gene 1 (RAG1) to chromosome 11p13}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-59136}, year = {1994}, abstract = {The human recombination activating gene 1 (RAGl) has previously been mapped to chromosomes 14q and 11 p. Here we confirm the chromosome 11 assignment by two independent approaches: autoradiographic and fluorescence in situ hybridization to metaphase spreads and analysis of human-hamster somatic cell hybrid DNA by the polymerase chain reaction (PCR) and Southern blotting. Our results unequivocally localize RAG1 to llp13.}, subject = {Biochemie}, language = {en} } @article{EngelRhiemHahnenetal.2018, author = {Engel, Christoph and Rhiem, Kerstin and Hahnen, Eric and Loibl, Sibylle and Weber, Karsten E. and Seiler, Sabine and Zachariae, Silke and Hauke, Jan and Wappenschmidt, Barbara and Waha, Anke and Bl{\"u}mcke, Britta and Kiechle, Marion and Meindl, Alfons and Niederacher, Dieter and Bartram, Claus R. and Speiser, Dorothee and Schlegelberger, Brigitte and Arnold, Norbert and Wieacker, Peter and Leinert, Elena and Gehrig, Andrea and Briest, Susanne and Kast, Karin and Riess, Olaf and Emons, G{\"u}nter and Weber, Bernhard H. F. and Engel, Jutta and Schmutzler, Rita K.}, title = {Prevalence of pathogenic BRCA1/2 germline mutations among 802 women with unilateral triple-negative breast cancer without family cancer history}, series = {BMC Cancer}, volume = {18}, journal = {BMC Cancer}, organization = {German Consortium for Hereditary Breast and Ovarian Cancer (GC-HBOC)}, doi = {10.1186/s12885-018-4029-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-226763}, year = {2018}, abstract = {Background There is no international consensus up to which age women with a diagnosis of triple-negative breast cancer (TNBC) and no family history of breast or ovarian cancer should be offered genetic testing for germline BRCA1 and BRCA2 (gBRCA) mutations. Here, we explored the association of age at TNBC diagnosis with the prevalence of pathogenic gBRCA mutations in this patient group. Methods The study comprised 802 women (median age 40 years, range 19-76) with oestrogen receptor, progesterone receptor, and human epidermal growth factor receptor type 2 negative breast cancers, who had no relatives with breast or ovarian cancer. All women were tested for pathogenic gBRCA mutations. Logistic regression analysis was used to explore the association between age at TNBC diagnosis and the presence of a pathogenic gBRCA mutation. Results A total of 127 women with TNBC(15.8\%) were gBRCA mutation carriers (BRCA1: n = 118, 14.7\%; BRCA2: n = 9, 1. 1\%). The mutation prevalence was 32.9\% in the age group 20-29 years compared to 6.9\% in the age group 60-69 years. Logistic regression analysis revealed a significant increase of mutation frequency with decreasing age at diagnosis (odds ratio 1.87 per 10 year decrease, 95\% CI 1.50-2.32, p < 0.001). gBRCA mutation risk was predicted to be > 10\% for women diagnosed below approximately 50 years. Conclusions Based on the general understanding that a heterozygous mutation probability of 10\% or greater justifies gBRCA mutation screening, women with TNBC diagnosed before the age of 50 years and no familial history of breast and ovarian cancer should be tested for gBRCA mutations. In Germany, this would concern approximately 880 women with newly diagnosed TNBC per year, of whom approximately 150 are expected to be identified as carriers of a pathogenic gBRCA mutation.}, language = {en} }