@article{DotterweichTowerBrandletal.2016, author = {Dotterweich, Julia and Tower, Robert J. and Brandl, Andreas and M{\"u}ller, Marc and Hofbauer, Lorenz C. and Beilhack, Andreas and Ebert, Regina and Gl{\"u}er, Claus C. and Tiwari, Sanjay and Sch{\"u}tze, Norbert and Jakob, Franz}, title = {The KISS1 Receptor as an In Vivo Microenvironment Imaging Biomarker of Multiple Myeloma Bone Disease}, series = {PLoS One}, volume = {11}, journal = {PLoS One}, number = {5}, doi = {10.1371/journal.pone.0155087}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-146960}, pages = {e0155087}, year = {2016}, abstract = {Multiple myeloma is one of the most common hematological diseases and is characterized by an aberrant proliferation of plasma cells within the bone marrow. As a result of crosstalk between cancer cells and the bone microenvironment, bone homeostasis is disrupted leading to osteolytic lesions and poor prognosis. Current diagnostic strategies for myeloma typically rely on detection of excess monoclonal immunoglobulins or light chains in the urine or serum. However, these strategies fail to localize the sites of malignancies. In this study we sought to identify novel biomarkers of myeloma bone disease which could target the malignant cells and/or the surrounding cells of the tumor microenvironment. From these studies, the KISS1 receptor (KISS1R), a G-protein-coupled receptor known to play a role in the regulation of endocrine functions, was identified as a target gene that was upregulated on mesenchymal stem cells (MSCs) and osteoprogenitor cells (OPCs) when co-cultured with myeloma cells. To determine the potential of this receptor as a biomarker, in vitro and in vivo studies were performed with the KISS1R ligand, kisspeptin, conjugated with a fluorescent dye. In vitro microscopy showed binding of fluorescently-labeled kisspeptin to both myeloma cells as well as MSCs under direct co-culture conditions. Next, conjugated kisspeptin was injected into immune-competent mice containing myeloma bone lesions. Tumor-burdened limbs showed increased peak fluorescence compared to contralateral controls. These data suggest the utility of the KISS1R as a novel biomarker for multiple myeloma, capable of targeting both tumor cells and host cells of the tumor microenvironment.}, language = {en} } @article{DietlSchwinnDietletal.2016, author = {Dietl, Sebastian and Schwinn, Stefanie and Dietl, Susanne and Riedl, Simone and Deinlein, Frank and Rutkowski, Stefan and von Bueren, Andre O. and Krauss, J{\"u}rgen and Schweitzer, Tilmann and Vince, Giles H. and Picard, Daniel and Eyrich, Matthias and Rosenwald, Andreas and Ramaswamy, Vijay and Taylor, Michael D. and Remke, Marc and Monoranu, Camelia M. and Beilhack, Andreas and Schlegel, Paul G. and W{\"o}lfl, Matthias}, title = {MB3W1 is an orthotopic xenograft model for anaplastic medulloblastoma displaying cancer stem cell- and Group 3-properties}, series = {BMC Cancer}, volume = {16}, journal = {BMC Cancer}, number = {115}, doi = {10.1186/s12885-016-2170-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-145877}, year = {2016}, abstract = {Background Medulloblastoma is the most common malignant brain tumor in children and can be divided in different molecular subgroups. Patients whose tumor is classified as a Group 3 tumor have a dismal prognosis. However only very few tumor models are available for this subgroup. Methods We established a robust orthotopic xenograft model with a cell line derived from the malignant pleural effusions of a child suffering from a Group 3 medulloblastoma. Results Besides classical characteristics of this tumor subgroup, the cells display cancer stem cell characteristics including neurosphere formation, multilineage differentiation, CD133/CD15 expression, high ALDH-activity and high tumorigenicity in immunocompromised mice with xenografts exactly recapitulating the original tumor architecture. Conclusions This model using unmanipulated, human medulloblastoma cells will enable translational research, specifically focused on Group 3 medulloblastoma.}, language = {en} } @article{ChopraBiehlSteinfattetal.2016, author = {Chopra, Martin and Biehl, Marlene and Steinfatt, Tim and Brandl, Andreas and Kums, Juliane and Amich, Jorge and Vaeth, Martin and Kuen, Janina and Holtappels, Rafaela and Podlech, J{\"u}rgen and Mottok, Anja and Kraus, Sabrina and Jord{\´a}n-Garotte, Ana-Laura and B{\"a}uerlein, Carina A. and Brede, Christian and Ribechini, Eliana and Fick, Andrea and Seher, Axel and Polz, Johannes and Ottmueller, Katja J. and Baker, Jeannette and Nishikii, Hidekazu and Ritz, Miriam and Mattenheimer, Katharina and Schwinn, Stefanie and Winter, Thorsten and Sch{\"a}fer, Viktoria and Krappmann, Sven and Einsele, Hermann and M{\"u}ller, Thomas D. and Reddehase, Matthias J. and Lutz, Manfred B. and M{\"a}nnel, Daniela N. and Berberich-Siebelt, Friederike and Wajant, Harald and Beilhack, Andreas}, title = {Exogenous TNFR2 activation protects from acute GvHD via host T reg cell expansion}, series = {Journal of Experimental Medicine}, volume = {213}, journal = {Journal of Experimental Medicine}, number = {9}, doi = {10.1084/jem.20151563}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-187640}, pages = {1881-1900}, year = {2016}, abstract = {Donor CD4\(^+\)Foxp3\(^+\) regulatory T cells (T reg cells) suppress graft-versus-host disease (GvHD) after allogeneic hematopoietic stem cell transplantation (HCT allo-HCT]). Current clinical study protocols rely on the ex vivo expansion of donor T reg cells and their infusion in high numbers. In this study, we present a novel strategy for inhibiting GvHD that is based on the in vivo expansion of recipient T reg cells before allo-HCT, exploiting the crucial role of tumor necrosis factor receptor 2 (TNFR2) in T reg cell biology. Expanding radiation-resistant host T reg cells in recipient mice using a mouse TNFR2-selective agonist before allo-HCT significantly prolonged survival and reduced GvHD severity in a TNFR2-and T reg cell-dependent manner. The beneficial effects of transplanted T cells against leukemia cells and infectious pathogens remained unaffected. A corresponding human TNFR2-specific agonist expanded human T reg cells in vitro. These observations indicate the potential of our strategy to protect allo-HCT patients from acute GvHD by expanding T reg cells via selective TNFR2 activation in vivo.}, language = {en} } @article{EngelhardtTerposKleberetal.2014, author = {Engelhardt, Monika and Terpos, Evangelos and Kleber, Martina and Gay, Francesca and W{\"a}sch, Ralph and Morgan, Gareth and Cavo, Michele and van de Donk, Niels and Beilhack, Andreas and Bruno, Benedetto and Johnsen, Hans Erik and Hajek, Roman and Driessen, Christoph and Ludwig, Heinz and Beksac, Meral and Boccadoro, Mario and Straka, Christian and Brighen, Sara and Gramatzki, Martin and Larocca, Alessandra and Lokhorst, Henk and Magarotto, Valeria and Morabito, Fortunato and Dimopoulos, Meletios A. and Einsele, Hermann and Sonneveld, Pieter and Palumbo, Antonio}, title = {European Myeloma Network recommendations on the evaluation and treatment of newly diagnosed patients with multiple myeloma}, series = {Haematologica}, volume = {99}, journal = {Haematologica}, number = {2}, doi = {10.3324/haematol.2013.099358}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-117477}, pages = {232-242}, year = {2014}, abstract = {Multiple myeloma management has undergone profound changes in the past thanks to advances in our understanding of the disease biology and improvements in treatment and supportive care approaches. This article presents recommendations of the European Myeloma Network for newly diagnosed patients based on the GRADE system for level of evidence. All patients with symptomatic disease should undergo risk stratification to classify patients for International Staging System stage (level of evidence: 1A) and for cytogenetically defined high-versus standard-risk groups (2B). Novel-agent-based induction and up-front autologous stem cell transplantation in medically fit patients remains the standard of care (1A). Induction therapy should include a triple combination of bortezomib, with either adriamycin or thalidomide and dexamethasone (1A), or with cyclophosphamide and dexamethasone (2B). Currently, allogeneic stem cell transplantation may be considered for young patients with high-risk disease and preferably in the context of a clinical trial (2B). Thalidomide (1B) or lenalidomide (1A) maintenance increases progression-free survival and possibly overall survival (2B). Bortezomib-based regimens are a valuable consolidation option, especially for patients who failed excellent response after autologous stem cell transplantation (2A). Bortezomib-melphalan-prednisone or melphalan-prednisone-thalidomide are the standards of care for transplant-ineligible patients (1A). Melphalan-prednisone-lenalidomide with lenalidomide maintenance increases progression-free survival, but overall survival data are needed. New data from the phase III study (MM-020/IFM 07-01) of lenalidomide-low-dose dexamethasone reached its primary end point of a statistically significant improvement in progression-free survival as compared to melphalan-prednisone-thalidomide and provides further evidence for the efficacy of lenalidomide-low-dose dexamethasone in transplant-ineligible patients (2B).}, language = {en} } @article{BeilhackChopraKrausetal.2013, author = {Beilhack, Andreas and Chopra, Martin and Kraus, Sabrina and Schwinn, Stefanie and Ritz, Miriam and Mattenheimer, Katharina and Mottok, Anja and Rosenwald, Andreas and Einsele, Hermann}, title = {Non-Invasive Bioluminescence Imaging to Monitor the Immunological Control of a Plasmablastic Lymphoma-Like B Cell Neoplasia after Hematopoietic Cell Transplantation}, doi = {10.1371/journal.pone.0081320}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-111341}, year = {2013}, abstract = {To promote cancer research and to develop innovative therapies, refined pre-clinical mouse tumor models that mimic the actual disease in humans are of dire need. A number of neoplasms along the B cell lineage are commonly initiated by a translocation recombining c-myc with the immunoglobulin heavy-chain gene locus. The translocation is modeled in the C.129S1-Ighatm1(Myc)Janz/J mouse which has been previously engineered to express c-myc under the control of the endogenous IgH promoter. This transgenic mouse exhibits B cell hyperplasia and develops diverse B cell tumors. We have isolated tumor cells from the spleen of a C.129S1-Ighatm1(Myc)Janz/J mouse that spontaneously developed a plasmablastic lymphoma-like disease. These cells were cultured, transduced to express eGFP and firefly luciferase, and gave rise to a highly aggressive, transplantable B cell lymphoma cell line, termed IM380. This model bears several advantages over other models as it is genetically induced and mimics the translocation that is detectable in a number of human B cell lymphomas. The growth of the tumor cells, their dissemination, and response to treatment within immunocompetent hosts can be imaged non-invasively in vivo due to their expression of firefly luciferase. IM380 cells are radioresistant in vivo and mice with established tumors can be allogeneically transplanted to analyze graft-versus-tumor effects of transplanted T cells. Allogeneic hematopoietic stem cell transplantation of tumor-bearing mice results in prolonged survival. These traits make the IM380 model very valuable for the study of B cell lymphoma pathophysiology and for the development of innovative cancer therapies.}, language = {en} } @article{BaeuerleinRiedelBakeretal.2013, author = {B{\"a}uerlein, Carina A. and Riedel, Simone S. and Baker, Jeanette and Brede, Christian and Jord{\´a}n Garrote, Ana-Laura and Chopra, Martin and Ritz, Miriam and Beilhack, Georg F. and Schulz, Stephan and Zeiser, Robert and Schlegel, Paul G. and Einsele, Hermann and Negrin, Robert S. and Beilhack, Andreas}, title = {A diagnostic window for the treatment of acute graft-versus-host disease prior to visible clinical symptoms in a murine model}, series = {BMC Medicine}, journal = {BMC Medicine}, doi = {10.1186/1741-7015-11-134}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-96797}, year = {2013}, abstract = {Background Acute graft-versus-host disease (aGVHD) poses a major limitation for broader therapeutic application of allogeneic hematopoietic cell transplantation (allo-HCT). Early diagnosis of aGVHD remains difficult and is based on clinical symptoms and histopathological evaluation of tissue biopsies. Thus, current aGVHD diagnosis is limited to patients with established disease manifestation. Therefore, for improved disease prevention it is important to develop predictive assays to identify patients at risk of developing aGVHD. Here we address whether insights into the timing of the aGVHD initiation and effector phases could allow for the detection of migrating alloreactive T cells before clinical aGVHD onset to permit for efficient therapeutic intervention. Methods Murine major histocompatibility complex (MHC) mismatched and minor histocompatibility antigen (miHAg) mismatched allo-HCT models were employed to assess the spatiotemporal distribution of donor T cells with flow cytometry and in vivo bioluminescence imaging (BLI). Daily flow cytometry analysis of peripheral blood mononuclear cells allowed us to identify migrating alloreactive T cells based on homing receptor expression profiles. Results We identified a time period of 2 weeks of massive alloreactive donor T cell migration in the blood after miHAg mismatch allo-HCT before clinical aGVHD symptoms appeared. Alloreactive T cells upregulated α4β7 integrin and P-selectin ligand during this migration phase. Consequently, targeted preemptive treatment with rapamycin, starting at the earliest detection time of alloreactive donor T cells in the peripheral blood, prevented lethal aGVHD. Conclusions Based on this data we propose a critical time frame prior to the onset of aGVHD symptoms to identify alloreactive T cells in the peripheral blood for timely and effective therapeutic intervention.}, language = {en} } @article{ChopraLangSalzmannetal.2013, author = {Chopra, Martin and Lang, Isabell and Salzmann, Steffen and Pachel, Christina and Kraus, Sabrina and B{\"a}uerlein, Carina A. and Brede, Christian and Jord{\´a}n Garrote, Ana-Laura and Mattenheimer, Katharina and Ritz, Miriam and Schwinn, Stefanie and Graf, Carolin and Sch{\"a}fer, Viktoria and Frantz, Stefan and Einsele, Hermann and Wajant, Harald and Beilhack, Andreas}, title = {Tumor Necrosis Factor Induces Tumor Promoting and Anti-Tumoral Effects on Pancreatic Cancer via TNFR1}, series = {PLoS ONE}, journal = {PLoS ONE}, doi = {10.1371/journal.pone.0075737}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-97246}, year = {2013}, abstract = {Multiple activities are ascribed to the cytokine tumor necrosis factor (TNF) in health and disease. In particular, TNF was shown to affect carcinogenesis in multiple ways. This cytokine acts via the activation of two cell surface receptors, TNFR1, which is associated with inflammation, and TNFR2, which was shown to cause anti-inflammatory signaling. We assessed the effects of TNF and its two receptors on the progression of pancreatic cancer by in vivo bioluminescence imaging in a syngeneic orthotopic tumor mouse model with Panc02 cells. Mice deficient for TNFR1 were unable to spontaneously reject Panc02 tumors and furthermore displayed enhanced tumor progression. In contrast, a fraction of wild type (37.5\%), TNF deficient (12.5\%), and TNFR2 deficient mice (22.2\%) were able to fully reject the tumor within two weeks. Pancreatic tumors in TNFR1 deficient mice displayed increased vascular density, enhanced infiltration of CD4+ T cells and CD4+ forkhead box P3 (FoxP3)+ regulatory T cells (Treg) but reduced numbers of CD8+ T cells. These alterations were further accompanied by transcriptional upregulation of IL4. Thus, TNF and TNFR1 are required in pancreatic ductal carcinoma to ensure optimal CD8+ T cell-mediated immunosurveillance and tumor rejection. Exogenous systemic administration of human TNF, however, which only interacts with murine TNFR1, accelerated tumor progression. This suggests that TNFR1 has basically the capability in the Panc02 model to trigger pro-and anti-tumoral effects but the spatiotemporal availability of TNF seems to determine finally the overall outcome.}, language = {en} } @article{RiedelMottokBredeetal.2012, author = {Riedel, Simone S. and Mottok, Anja and Brede, Christian and B{\"a}uerlein, Carina A. and Jord{\´a}n Garrote, Ana Laura and Ritz, Miriam and Mattenheimer, Katharina and Rosenwald, Andreas and Einsele, Hermann and Bogen, Bjarne and Beilhack, Andreas}, title = {Non-Invasive Imaging Provides Spatiotemporal Information on Disease Progression and Response to Therapy in a Murine Model of Multiple Myeloma}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-77978}, year = {2012}, abstract = {Background: Multiple myeloma (MM) is a B-cell malignancy, where malignant plasma cells clonally expand in the bone marrow of older people, causing significant morbidity and mortality. Typical clinical symptoms include increased serum calcium levels, renal insufficiency, anemia, and bone lesions. With standard therapies, MM remains incurable; therefore, the development of new drugs or immune cell-based therapies is desirable. To advance the goal of finding a more effective treatment for MM, we aimed to develop a reliable preclinical MM mouse model applying sensitive and reproducible methods for monitoring of tumor growth and metastasis in response to therapy. Material and Methods: A mouse model was created by intravenously injecting bone marrow-homing mouse myeloma cells (MOPC-315.BM) that expressed luciferase into BALB/c wild type mice. The luciferase in the myeloma cells allowed in vivo tracking before and after melphalan treatment with bioluminescence imaging (BLI). Homing of MOPC-315.BM luciferase+ myeloma cells to specific tissues was examined by flow cytometry. Idiotype-specific myeloma protein serum levels were measured by ELISA. In vivo measurements were validated with histopathology. Results: Strong bone marrow tropism and subsequent dissemination of MOPC-315.BM luciferase+ cells in vivo closely mimicked the human disease. In vivo BLI and later histopathological analysis revealed that 12 days of melphalan treatment slowed tumor progression and reduced MM dissemination compared to untreated controls. MOPC-315.BM luciferase+ cells expressed CXCR4 and high levels of CD44 and a4b1 in vitro which could explain the strong bone marrow tropism. The results showed that MOPC-315.BM cells dynamically regulated homing receptor expression and depended on interactions with surrounding cells. Conclusions: This study described a novel MM mouse model that facilitated convenient, reliable, and sensitive tracking of myeloma cells with whole body BLI in living animals. This model is highly suitable for monitoring the effects of different treatment regimens.}, subject = {Medizin}, language = {en} } @article{HorvatVogelKampfetal.2020, author = {Horvat, Sonja and Vogel, Patrick and Kampf, Thomas and Brandl, Andreas and Alshamsan, Aws and Alhadlaq, Hisham A. and Ahamed, Maqusood and Albrecht, Krystyna and Behr, Volker C. and Beilhack, Andreas and Groll, J{\"u}rgen}, title = {Crosslinked Coating Improves the Signal-to-Noise Ratio of Iron Oxide Nanoparticles in Magnetic Particle Imaging (MPI)}, series = {ChemNanoMat}, volume = {6}, journal = {ChemNanoMat}, number = {5}, doi = {10.1002/cnma.202000009}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-214718}, pages = {755 -- 758}, year = {2020}, abstract = {Magnetic particle imaging is an emerging tomographic method used for evaluation of the spatial distribution of iron-oxide nanoparticles. In this work, the effect of the polymer coating on the response of particles was studied. Particles with covalently crosslinked coating showed improved signal and image resolution.}, language = {en} } @article{KleinHesslingMuhammadKleinetal.2017, author = {Klein-Hessling, Stefan and Muhammad, Khalid and Klein, Matthias and Pusch, Tobias and Rudolf, Ronald and Fl{\"o}ter, Jessica and Qureischi, Musga and Beilhack, Andreas and Vaeth, Martin and Kummerow, Carsten and Backes, Christian and Schoppmeyer, Rouven and Hahn, Ulrike and Hoth, Markus and Bopp, Tobias and Berberich-Siebelt, Friederike and Patra, Amiya and Avots, Andris and M{\"u}ller, Nora and Schulze, Almut and Serfling, Edgar}, title = {NFATc1 controls the cytotoxicity of CD8\(^{+}\) T cells}, series = {Nature Communications}, volume = {8}, journal = {Nature Communications}, number = {511}, doi = {10.1038/s41467-017-00612-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170353}, year = {2017}, abstract = {Cytotoxic T lymphocytes are effector CD8\(^{+}\) T cells that eradicate infected and malignant cells. Here we show that the transcription factor NFATc1 controls the cytotoxicity of mouse cytotoxic T lymphocytes. Activation of Nfatc1\(^{-/-}\) cytotoxic T lymphocytes showed a defective cytoskeleton organization and recruitment of cytosolic organelles to immunological synapses. These cells have reduced cytotoxicity against tumor cells, and mice with NFATc1-deficient T cells are defective in controlling Listeria infection. Transcriptome analysis shows diminished RNA levels of numerous genes in Nfatc1\(^{-/-}\) CD8\(^{+}\) T cells, including Tbx21, Gzmb and genes encoding cytokines and chemokines, and genes controlling glycolysis. Nfatc1\(^{-/-}\), but not Nfatc2\(^{-/-}\) CD8\(^{+}\) T cells have an impaired metabolic switch to glycolysis, which can be restored by IL-2. Genome-wide ChIP-seq shows that NFATc1 binds many genes that control cytotoxic T lymphocyte activity. Together these data indicate that NFATc1 is an important regulator of cytotoxic T lymphocyte effector functions.}, language = {en} } @article{RibechiniEckertBeilhacketal.2019, author = {Ribechini, Eliana and Eckert, Ina and Beilhack, Andreas and Du Plessis, Nelita and Walzl, Gerhard and Schleicher, Ulrike and Ritter, Uwe and Lutz, Manfred B.}, title = {Heat-killed Mycobacterium tuberculosis prime-boost vaccination induces myeloid-derived suppressor cells with spleen dendritic cell-killing capability}, series = {JCI Insight}, volume = {13}, journal = {JCI Insight}, number = {4}, doi = {10.1172/jci.insight.128664}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201973}, pages = {e128664}, year = {2019}, abstract = {Tuberculosis patients and mice infected with live Mycobacterium tuberculosis accumulate high numbers of myeloid-derived suppressor cells (MDSCs). Here, we hypothesized that dead M. tuberculosis vaccines also may induce MDSCs that could impair the efficacy of vaccination. We found that repeated injections of M. tuberculosis vaccines (heat-killed M. tuberculosis in incomplete Freund's adjuvant, such as Montanide) but not single or control vaccines without M. tuberculosis strongly expanded CD11b\(^+\) myeloid cells in the spleen, leading to T cell suppression of proliferation and killing ex vivo. Dead M. tuberculosis vaccination induced the generation of CD11b\(^+\)Ly6C\(^{hi}\)CD115\(^+\) iNOS/Nos2\(^+\) monocytic MDSCs (M-MDSCs) upon application of inflammatory or microbial activation signals. In vivo these M-MDSCs were positioned strategically in the splenic bridging channels and then positioned in the white pulp areas. Notably, within 6-24 hours, in a Nos2-dependent fashion, they produced NO to rapidly kill conventional and plasmacytoid DCs while, surprisingly, sparing T cells in vivo. Thus, we demonstrate that M. tuberculosis vaccine induced M-MDSCs do not directly suppress effector T cells in vivo but, instead, indirectly by killing DCs. Collectively, we demonstrate that M. tuberculosis booster vaccines induce M-MDSCs in the spleen that can be activated to kill DCs. Our data suggest that formation of MDSCs by M. tuberculosis vaccines should be investigated also in clinical trials.}, language = {en} } @article{SchwinnMokhtariThuseketal.2021, author = {Schwinn, Stefanie and Mokhtari, Zeinab and Thusek, Sina and Schneider, Theresa and Sir{\´e}n, Anna-Leena and Tiemeyer, Nicola and Caruana, Ignazio and Miele, Evelina and Schlegel, Paul G. and Beilhack, Andreas and W{\"o}lfl, Matthias}, title = {Cytotoxic effects and tolerability of gemcitabine and axitinib in a xenograft model for c-myc amplified medulloblastoma}, series = {Scientific Reports}, volume = {11}, journal = {Scientific Reports}, number = {1}, doi = {10.1038/s41598-021-93586-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-261476}, year = {2021}, abstract = {Medulloblastoma is the most common high-grade brain tumor in childhood. Medulloblastomas with c-myc amplification, classified as group 3, are the most aggressive among the four disease subtypes resulting in a 5-year overall survival of just above 50\%. Despite current intensive therapy regimens, patients suffering from group 3 medulloblastoma urgently require new therapeutic options. Using a recently established c-myc amplified human medulloblastoma cell line, we performed an in-vitro-drug screen with single and combinatorial drugs that are either already clinically approved or agents in the advanced stage of clinical development. Candidate drugs were identified in vitro and then evaluated in vivo. Tumor growth was closely monitored by BLI. Vessel development was assessed by 3D light-sheet-fluorescence-microscopy. We identified the combination of gemcitabine and axitinib to be highly cytotoxic, requiring only low picomolar concentrations when used in combination. In the orthotopic model, gemcitabine and axitinib showed efficacy in terms of tumor control and survival. In both models, gemcitabine and axitinib were better tolerated than the standard regimen comprising of cisplatin and etoposide phosphate. 3D light-sheet-fluorescence-microscopy of intact tumors revealed thinning and rarefication of tumor vessels, providing one explanation for reduced tumor growth. Thus, the combination of the two drugs gemcitabine and axitinib has favorable effects on preventing tumor progression in an orthotopic group 3 medulloblastoma xenograft model while exhibiting a favorable toxicity profile. The combination merits further exploration as a new approach to treat high-risk group 3 medulloblastoma.}, language = {en} } @article{ShaikhVargasMokhtarietal.2021, author = {Shaikh, Haroon and Vargas, Juan Gamboa and Mokhtari, Zeinab and Jarick, Katja J. and Ulbrich, Maria and Mosca, Josefina Pe{\~n}a and Viera, Estibaliz Arellano and Graf, Caroline and Le, Duc-Dung and Heinze, Katrin G. and B{\"u}ttner-Herold, Maike and Rosenwald, Andreas and Pezoldt, Joern and Huehn, Jochen and Beilhack, Andreas}, title = {Mesenteric Lymph Node Transplantation in Mice to Study Immune Responses of the Gastrointestinal Tract}, series = {Frontiers in Immunology}, volume = {12}, journal = {Frontiers in Immunology}, issn = {1664-3224}, doi = {10.3389/fimmu.2021.689896}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-244869}, year = {2021}, abstract = {Mesenteric lymph nodes (mLNs) are sentinel sites of enteral immunosurveillance and immune homeostasis. Immune cells from the gastrointestinal tract (GIT) are constantly recruited to the mLNs in steady-state and under inflammatory conditions resulting in the induction of tolerance and immune cells activation, respectively. Surgical dissection and transplantation of lymph nodes (LN) is a technique that has supported seminal work to study LN function and is useful to investigate resident stromal and endothelial cell biology and their cellular interactions in experimental disease models. Here, we provide a detailed protocol of syngeneic mLN transplantation and report assays to analyze effective mLN engraftment in congenic recipients. Transplanted mLNs allow to study T cell activation and proliferation in preclinical mouse models. Donor mLNs proved viable and functional after surgical transplantation and regenerated blood and lymphatic vessels. Immune cells from the host completely colonized the transplanted mLNs within 7-8 weeks after the surgical intervention. After allogeneic hematopoietic cell transplantation (allo-HCT), adoptively transferred allogeneic CD4+ T cells from FVB/N (H-2q) mice homed to the transplanted mLNs in C57BL/6 (H-2b) recipients during the initiation phase of acute graft-versus-host disease (aGvHD). These CD4+ T cells retained full proliferative capacity and upregulated effector and gut homing molecules comparable to those in mLNs from unmanipulated wild-type recipients. Wild type mLNs transplanted into MHCII deficient syngeneic hosts sufficed to activate alloreactive T cells upon allogeneic hematopoietic cell transplantation, even in the absence of MHCII+ CD11c+ myeloid cells. These data support that orthotopically transplanted mLNs maintain physiological functions after transplantation. The technique of LN transplantation can be applied to study migratory and resident cell compartment interactions in mLNs as well as immune reactions from and to the gut under inflammatory and non-inflammatory conditions.}, language = {en} } @article{WajantBeilhack2019, author = {Wajant, Harald and Beilhack, Andreas}, title = {Targeting regulatory T cells by addressing tumor necrosis factor and its receptors in allogeneic hematopoietic cell transplantation and cancer}, series = {Frontiers in Immunology}, volume = {10}, journal = {Frontiers in Immunology}, number = {2040}, doi = {10.3389/fimmu.2019.02040}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201578}, year = {2019}, abstract = {An intricate network of molecular and cellular actors orchestrates the delicate balance between effector immune responses and immune tolerance. The pleiotropic cytokine tumor necrosis factor-alpha (TNF) proves as a pivotal protagonist promoting but also suppressing immune responses. These opposite actions are accomplished through specialist cell types responding to TNF via TNF receptors TNFR1 and TNFR2. Recent findings highlight the importance of TNFR2 as a key regulator of activated natural FoxP3+ regulatory T cells (Tregs) in inflammatory conditions, such as acute graft-vs.-host disease (GvHD) and the tumor microenvironment. Here we review recent advances in our understanding of TNFR2 signaling in T cells and discuss how these can reconcile seemingly conflicting observations when manipulating TNF and TNFRs. As TNFR2 emerges as a new and attractive target we furthermore pinpoint strategies and potential pitfalls for therapeutic targeting of TNFR2 for cancer treatment and immune tolerance after allogeneic hematopoietic cell transplantation.}, language = {en} } @article{EckertRibechiniJaricketal.2021, author = {Eckert, Ina N. and Ribechini, Eliana and Jarick, Katja J. and Strozniak, Sandra and Potter, Sarah J. and Beilhack, Andreas and Lutz, Manfred B.}, title = {VLA-1 Binding to Collagen IV Controls Effector T Cell Suppression by Myeloid-Derived Suppressor Cells in the Splenic Red Pulp}, series = {Frontiers in Immunology}, volume = {11}, journal = {Frontiers in Immunology}, issn = {1664-3224}, doi = {10.3389/fimmu.2020.616531}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-222671}, year = {2021}, abstract = {Myeloid-derived suppressor cells (MDSCs) represent a major population controlling T cell immune responses. However, little is known about their molecular requirements for homing and T cell interaction to mediate suppression. Here, we investigated the functional role of the homing and collagen IV receptor VLA-1 (α1β1-integrin) on in vitro GM-CSF generated murine MDSCs from wild-type (WT) and CD49a/α1-integrin (Itga1\(^{-/-}\)) gene-deficient mice. Here, we found that effector (Teff) but not naive (Tn) CD4\(^+\) T cells express VLA-1 and monocytes further up-regulated their expression after culture in GM-CSF when they differentiated into the monocytic subset of resting MDSCs (R-MDSCs). Subsequent activation of R-MDSCs by LPS+IFN-γ (A-MDSCs) showed increased in vitro suppressor potential, which was independent of VLA-1. Surprisingly, VLA-1 deficiency did not influence A-MDSC motility or migration on collagen IV in vitro. However, interaction times of Itga1\(^{-/-}\) A-MDSCs with Teff were shorter than with WT A-MDSCs on collagen IV but not on fibronectin substrate in vitro. After injection, A-MDSCs homed to the splenic red pulp where they co-localized with Teff and showed immediate suppression already after 6 h as shown by inhibition of T cell proliferation and induction of apoptosis. Injection of A-MDSCs from Itga1\(^{-/-}\) mice showed equivalent homing into the spleen but a reduced suppressive effect. Interaction studies of A-MDSCs with Teff in the subcapsular red pulp with intravital two-photon microscopy revealed also here that MDSC motility and migration parameters were not altered by VLA-1 deficiency, but the interaction times with Teff were reduced. Together, our data point to a new role of VLA-1 adhesion to collagen IV as a prerequisite for extended contact times with Teff required for suppression.}, language = {en} } @article{BaeuerleinQureischiMokhtarietal.2021, author = {B{\"a}uerlein, Carina A. and Qureischi, Musga and Mokhtari, Zeinab and Tabares, Paula and Brede, Christian and Jord{\´a}n Garrote, Ana-Laura and Riedel, Simone S. and Chopra, Martin and Reu, Simone and Mottok, Anja and Arellano-Viera, Estibaliz and Graf, Carolin and Kurzwart, Miriam and Schmiedgen, Katharina and Einsele, Hermann and W{\"o}lfl, Matthias and Schlegel, Paul-Gerhardt and Beilhack, Andreas}, title = {A T-Cell Surface Marker Panel Predicts Murine Acute Graft-Versus-Host Disease}, series = {Frontiers in Immunology}, volume = {11}, journal = {Frontiers in Immunology}, issn = {1664-3224}, doi = {10.3389/fimmu.2020.593321}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-224290}, year = {2021}, abstract = {Acute graft-versus-host disease (aGvHD) is a severe and often life-threatening complication of allogeneic hematopoietic cell transplantation (allo-HCT). AGvHD is mediated by alloreactive donor T-cells targeting predominantly the gastrointestinal tract, liver, and skin. Recent work in mice and patients undergoing allo-HCT showed that alloreactive T-cells can be identified by the expression of α4β7 integrin on T-cells even before manifestation of an aGvHD. Here, we investigated whether the detection of a combination of the expression of T-cell surface markers on peripheral blood (PB) CD8\(^+\) T-cells would improve the ability to predict aGvHD. To this end, we employed two independent preclinical models of minor histocompatibility antigen mismatched allo-HCT following myeloablative conditioning. Expression profiles of integrins, selectins, chemokine receptors, and activation markers of PB donor T-cells were measured with multiparameter flow cytometry at multiple time points before the onset of clinical aGvHD symptoms. In both allo-HCT models, we demonstrated a significant upregulation of α4β7 integrin, CD162E, CD162P, and conversely, a downregulation of CD62L on donor T-cells, which could be correlated with the development of aGvHD. Other surface markers, such as CD25, CD69, and CC-chemokine receptors were not found to be predictive markers. Based on these preclinical data from mouse models, we propose a surface marker panel on peripheral blood T-cells after allo-HCT combining α4β7 integrin with CD62L, CD162E, and CD162P (cutaneous lymphocyte antigens, CLA, in humans) to identify patients at risk for developing aGvHD early after allo-HCT.}, language = {en} } @article{DahlhoffManzSteinfattetal.2022, author = {Dahlhoff, Julia and Manz, Hannah and Steinfatt, Tim and Delgado-Tascon, Julia and Seebacher, Elena and Schneider, Theresa and Wilnit, Amy and Mokhtari, Zeinab and Tabares, Paula and B{\"o}ckle, David and Rasche, Leo and Martin Kort{\"u}m, K. and Lutz, Manfred B. and Einsele, Hermann and Brandl, Andreas and Beilhack, Andreas}, title = {Transient regulatory T-cell targeting triggers immune control of multiple myeloma and prevents disease progression}, series = {Leukemia}, volume = {36}, journal = {Leukemia}, number = {3}, issn = {1476-5551}, doi = {10.1038/s41375-021-01422-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-271787}, pages = {790-800}, year = {2022}, abstract = {Multiple myeloma remains a largely incurable disease of clonally expanding malignant plasma cells. The bone marrow microenvironment harbors treatment-resistant myeloma cells, which eventually lead to disease relapse in patients. In the bone marrow, CD4\(^{+}\)FoxP3\(^{+}\) regulatory T cells (Tregs) are highly abundant amongst CD4\(^{+}\) T cells providing an immune protective niche for different long-living cell populations, e.g., hematopoietic stem cells. Here, we addressed the functional role of Tregs in multiple myeloma dissemination to bone marrow compartments and disease progression. To investigate the immune regulation of multiple myeloma, we utilized syngeneic immunocompetent murine multiple myeloma models in two different genetic backgrounds. Analyzing the spatial immune architecture of multiple myeloma revealed that the bone marrow Tregs accumulated in the vicinity of malignant plasma cells and displayed an activated phenotype. In vivo Treg depletion prevented multiple myeloma dissemination in both models. Importantly, short-term in vivo depletion of Tregs in mice with established multiple myeloma evoked a potent CD8 T cell- and NK cell-mediated immune response resulting in complete and stable remission. Conclusively, this preclinical in-vivo study suggests that Tregs are an attractive target for the treatment of multiple myeloma.}, language = {en} } @article{KalledaAmichArslanetal.2016, author = {Kalleda, Natarajaswamy and Amich, Jorge and Arslan, Berkan and Poreddy, Spoorthi and Mattenheimer, Katharina and Mokhtari, Zeinab and Einsele, Hermann and Brock, Matthias and Heinze, Katrin Gertrud and Beilhack, Andreas}, title = {Dynamic Immune Cell Recruitment After Murine Pulmonary Aspergillus fumigatus Infection under Different Immunosuppressive Regimens}, series = {Frontiers in Microbiology}, volume = {7}, journal = {Frontiers in Microbiology}, number = {1107}, doi = {10.3389/fmicb.2016.01107}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-165368}, year = {2016}, abstract = {Humans are continuously exposed to airborne spores of the saprophytic fungus Aspergillus fumigatus. However, in healthy individuals pulmonary host defense mechanisms efficiently eliminate the fungus. In contrast, A. fumigatus causes devastating infections in immunocompromised patients. Host immune responses against A. fumigatus lung infections in immunocompromised conditions have remained largely elusive. Given the dynamic changes in immune cell subsets within tissues upon immunosuppressive therapy, we dissected the spatiotemporal pulmonary immune response after A. fumigatus infection to reveal basic immunological events that fail to effectively control invasive fungal disease. In different immunocompromised murine models, myeloid, notably neutrophils, and macrophages, but not lymphoid cells were strongly recruited to the lungs upon infection. Other myeloid cells, particularly dendritic cells and monocytes, were only recruited to lungs of corticosteroid treated mice, which developed a strong pulmonary inflammation after infection. Lymphoid cells, particularly CD4\(^+\) or CD8\(^+\) T-cells and NK cells were highly reduced upon immunosuppression and not recruited after A. fumigatus infection. Moreover, adoptive CD11b\(^+\) myeloid cell transfer rescued cyclophosphamide immunosuppressed mice from lethal A. fumigatus infection but not cortisone and cyclophosphamide immunosuppressed mice. Our findings illustrate that CD11b\(^+\) myeloid cells are critical for anti-A. fumigatus defense under cyclophosphamide immunosuppressed conditions.}, language = {en} } @article{StegnervanEeuwijkAngayetal.2017, author = {Stegner, David and van Eeuwijk, Judith M.M. and Angay, Oğuzhan and Gorelashvili, Maximilian G. and Semeniak, Daniela and Pinnecker, J{\"u}rgen and Schmithausen, Patrick and Meyer, Imke and Friedrich, Mike and D{\"u}tting, Sebastian and Brede, Christian and Beilhack, Andreas and Schulze, Harald and Nieswandt, Bernhard and Heinze, Katrin G.}, title = {Thrombopoiesis is spatially regulated by the bone marrow vasculature}, series = {Nature Communications}, volume = {8}, journal = {Nature Communications}, number = {127}, doi = {10.1038/s41467-017-00201-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170591}, year = {2017}, abstract = {In mammals, megakaryocytes (MKs) in the bone marrow (BM) produce blood platelets, required for hemostasis and thrombosis. MKs originate from hematopoietic stem cells and are thought to migrate from an endosteal niche towards the vascular sinusoids during their maturation. Through imaging of MKs in the intact BM, here we show that MKs can be found within the entire BM, without a bias towards bone-distant regions. By combining in vivo two-photon microscopy and in situ light-sheet fluorescence microscopy with computational simulations, we reveal surprisingly slow MK migration, limited intervascular space, and a vessel-biased MK pool. These data challenge the current thrombopoiesis model of MK migration and support a modified model, where MKs at sinusoids are replenished by sinusoidal precursors rather than cells from a distant periostic niche. As MKs do not need to migrate to reach the vessel, therapies to increase MK numbers might be sufficient to raise platelet counts.}, language = {en} } @article{MajumderJugovicSauletal.2021, author = {Majumder, Snigdha and Jugovic, Isabelle and Saul, Domenica and Bell, Luisa and Hundhausen, Nadine and Seal, Rishav and Beilhack, Andreas and Rosenwald, Andreas and Mougiakakos, Dimitrios and Berberich-Siebelt, Friederike}, title = {Rapid and Efficient Gene Editing for Direct Transplantation of Naive Murine Cas9\(^+\) T Cells}, series = {Frontiers in Immunology}, volume = {12}, journal = {Frontiers in Immunology}, issn = {1664-3224}, doi = {10.3389/fimmu.2021.683631}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-242896}, year = {2021}, abstract = {Gene editing of primary T cells is a difficult task. However, it is important for research and especially for clinical T-cell transfers. CRISPR/Cas9 is the most powerful gene-editing technique. It has to be applied to cells by either retroviral transduction or electroporation of ribonucleoprotein complexes. Only the latter is possible with resting T cells. Here, we make use of Cas9 transgenic mice and demonstrate nucleofection of pre-stimulated and, importantly, of naive CD3\(^+\) T cells with guideRNA only. This proved to be rapid and efficient with no need of further selection. In the mixture of Cas9\(^+\)CD3\(^+\) T cells, CD4\(^+\) and CD8\(^+\) conventional as well as regulatory T cells were targeted concurrently. IL-7 supported survival and naivety in vitro, but T cells were also transplantable immediately after nucleofection and elicited their function like unprocessed T cells. Accordingly, metabolic reprogramming reached normal levels within days. In a major mismatch model of GvHD, not only ablation of NFATc1 and/or NFATc2, but also of the NFAT-target gene IRF4 in na{\"i}ve primary murine Cas9\(^+\)CD3\(^+\) T cells by gRNA-only nucleofection ameliorated GvHD. However, pre-activated murine T cells could not achieve long-term protection from GvHD upon single NFATc1 or NFATc2 knockout. This emphasizes the necessity of gene-editing and transferring unstimulated human T cells during allogenic hematopoietic stem cell transplantation.}, language = {en} } @article{YuWolfThuseketal.2021, author = {Yu, Yidong and Wolf, Ann-Katrin and Thusek, Sina and Heinekamp, Thorsten and Bromley, Michael and Krappmann, Sven and Terpitz, Ulrich and Voigt, Kerstin and Brakhage, Axel A. and Beilhack, Andreas}, title = {Direct Visualization of Fungal Burden in Filamentous Fungus-Infected Silkworms}, series = {Journal of Fungi}, volume = {7}, journal = {Journal of Fungi}, number = {2}, issn = {2309-608X}, doi = {10.3390/jof7020136}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-228855}, year = {2021}, abstract = {Invasive fungal infections (IFIs) are difficult to diagnose and to treat and, despite several available antifungal drugs, cause high mortality rates. In the past decades, the incidence of IFIs has continuously increased. More recently, SARS-CoV-2-associated lethal IFIs have been reported worldwide in critically ill patients. Combating IFIs requires a more profound understanding of fungal pathogenicity to facilitate the development of novel antifungal strategies. Animal models are indispensable for studying fungal infections and to develop new antifungals. However, using mammalian animal models faces various hurdles including ethical issues and high costs, which makes large-scale infection experiments extremely challenging. To overcome these limitations, we optimized an invertebrate model and introduced a simple calcofluor white (CW) staining protocol to macroscopically and microscopically monitor disease progression in silkworms (Bombyx mori) infected with the human pathogenic filamentous fungi Aspergillus fumigatus and Lichtheimia corymbifera. This advanced silkworm A. fumigatus infection model could validate knockout mutants with either attenuated, strongly attenuated or unchanged virulence. Finally, CW staining allowed us to efficiently visualize antifungal treatment outcomes in infected silkworms. Conclusively, we here present a powerful animal model combined with a straightforward staining protocol to expedite large-scale in vivo research of fungal pathogenicity and to investigate novel antifungal candidates.}, language = {en} } @article{DaViaSolimandoGaritanoTrojaolaetal.2019, author = {Da Vi{\`a}, Matteo Claudio and Solimando, Antonio Giovanni and Garitano-Trojaola, Andoni and Barrio, Santiago and Munawar, Umair and Strifler, Susanne and Haertle, Larissa and Rhodes, Nadine and Vogt, Cornelia and Lapa, Constantin and Beilhack, Andreas and Rasche, Leo and Einsele, Hermann and Kort{\"u}m, K. Martin}, title = {CIC Mutation as a Molecular Mechanism of Acquired Resistance to Combined BRAF-MEK Inhibition in Extramedullary Multiple Myeloma with Central Nervous System Involvement}, series = {The Oncologist}, volume = {25}, journal = {The Oncologist}, number = {2}, doi = {10.1634/theoncologist.2019-0356}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-219549}, pages = {112-118}, year = {2019}, abstract = {Combined MEK-BRAF inhibition is a well-established treatment strategy in BRAF-mutated cancer, most prominently in malignant melanoma with durable responses being achieved through this targeted therapy. However, a subset of patients face primary unresponsiveness despite presence of the activating mutation at position V600E, and others acquire resistance under treatment. Underlying resistance mechanisms are largely unknown, and diagnostic tests to predict tumor response to BRAF-MEK inhibitor treatment are unavailable. Multiple myeloma represents the second most common hematologic malignancy, and point mutations in BRAF are detectable in about 10\% of patients. Targeted inhibition has been successfully applied, with mixed responses observed in a substantial subset of patients mirroring the widespread spatial heterogeneity in this genomically complex disease. Central nervous system (CNS) involvement is an extremely rare, extramedullary form of multiple myeloma that can be diagnosed in less than 1\% of patients. It is considered an ultimate high-risk feature, associated with unfavorable cytogenetics, and, even with intense treatment applied, survival is short, reaching less than 12 months in most cases. Here we not only describe the first patient with an extramedullary CNS relapse responding to targeted dabrafenib and trametinib treatment, we furthermore provide evidence that a point mutation within the capicua transcriptional repressor (CIC) gene mediated the acquired resistance in this patient.}, language = {en} } @article{SchusterKruegerSubotaetal.2017, author = {Schuster, Sarah and Kr{\"u}ger, Timothy and Subota, Ines and Thusek, Sina and Rotureau, Brice and Beilhack, Andreas and Engstler, Markus}, title = {Developmental adaptations of trypanosome motility to the tsetse fly host environments unravel a multifaceted in vivo microswimmer system}, series = {eLife}, volume = {6}, journal = {eLife}, doi = {10.7554/eLife.27656}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-158662}, pages = {e27656}, year = {2017}, abstract = {The highly motile and versatile protozoan pathogen Trypanosoma brucei undergoes a complex life cycle in the tsetse fly. Here we introduce the host insect as an expedient model environment for microswimmer research, as it allows examination of microbial motion within a diversified, secluded and yet microscopically tractable space. During their week-long journey through the different microenvironments of the fly´s interior organs, the incessantly swimming trypanosomes cross various barriers and confined surroundings, with concurrently occurring major changes of parasite cell architecture. Multicolour light sheet fluorescence microscopy provided information about tsetse tissue topology with unprecedented resolution and allowed the first 3D analysis of the infection process. High-speed fluorescence microscopy illuminated the versatile behaviour of trypanosome developmental stages, ranging from solitary motion and near-wall swimming to collective motility in synchronised swarms and in confinement. We correlate the microenvironments and trypanosome morphologies to high-speed motility data, which paves the way for cross-disciplinary microswimmer research in a naturally evolved environment.}, language = {en} } @article{VargasWagnerShaikhetal.2022, author = {Vargas, Juan Gamboa and Wagner, Jennifer and Shaikh, Haroon and Lang, Isabell and Medler, Juliane and Anany, Mohamed and Steinfatt, Tim and Mosca, Josefina Pe{\~n}a and Haack, Stephanie and Dahlhoff, Julia and B{\"u}ttner-Herold, Maike and Graf, Carolin and Viera, Estibaliz Arellano and Einsele, Hermann and Wajant, Harald and Beilhack, Andreas}, title = {A TNFR2-Specific TNF fusion protein with improved in vivo activity}, series = {Frontiers in Immunology}, volume = {13}, journal = {Frontiers in Immunology}, issn = {1664-3224}, doi = {10.3389/fimmu.2022.888274}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-277436}, year = {2022}, abstract = {Tumor necrosis factor (TNF) receptor-2 (TNFR2) has attracted considerable interest as a target for immunotherapy. Indeed, using oligomeric fusion proteins of single chain-encoded TNFR2-specific TNF mutants (scTNF80), expansion of regulatory T cells and therapeutic activity could be demonstrated in various autoinflammatory diseases, including graft-versus-host disease (GvHD), experimental autoimmune encephalomyelitis (EAE) and collagen-induced arthritis (CIA). With the aim to improve the in vivo availability of TNFR2-specific TNF fusion proteins, we used here the neonatal Fc receptor (FcRn)-interacting IgG1 molecule as an oligomerizing building block and generated a new TNFR2 agonist with improved serum retention and superior in vivo activity. Methods Single-chain encoded murine TNF80 trimers (sc(mu)TNF80) were fused to the C-terminus of an in mice irrelevant IgG1 molecule carrying the N297A mutation which avoids/minimizes interaction with Fcγ-receptors (FcγRs). The fusion protein obtained (irrIgG1(N297A)-sc(mu)TNF80), termed NewSTAR2 (New selective TNF-based agonist of TNF receptor 2), was analyzed with respect to activity, productivity, serum retention and in vitro and in vivo activity. STAR2 (TNC-sc(mu)TNF80 or selective TNF-based agonist of TNF receptor 2), a well-established highly active nonameric TNFR2-specific variant, served as benchmark. NewSTAR2 was assessed in various in vitro and in vivo systems. Results STAR2 (TNC-sc(mu)TNF80) and NewSTAR2 (irrIgG1(N297A)-sc(mu)TNF80) revealed comparable in vitro activity. The novel domain architecture of NewSTAR2 significantly improved serum retention compared to STAR2, which correlated with efficient binding to FcRn. A single injection of NewSTAR2 enhanced regulatory T cell (Treg) suppressive activity and increased Treg numbers by > 300\% in vivo 5 days after treatment. Treg numbers remained as high as 200\% for about 10 days. Furthermore, a single in vivo treatment with NewSTAR2 upregulated the adenosine-regulating ectoenzyme CD39 and other activation markers on Tregs. TNFR2-stimulated Tregs proved to be more suppressive than unstimulated Tregs, reducing conventional T cell (Tcon) proliferation and expression of activation markers in vitro. Finally, singular preemptive NewSTAR2 administration five days before allogeneic hematopoietic cell transplantation (allo-HCT) protected mice from acute GvHD. Conclusions NewSTAR2 represents a next generation ligand-based TNFR2 agonist, which is efficiently produced, exhibits improved pharmacokinetic properties and high serum retention with superior in vivo activity exerting powerful protective effects against acute GvHD.}, language = {en} } @article{RudeliusRosenfeldtLeichetal.2019, author = {Rudelius, Martina and Rosenfeldt, Mathias Tillmann and Leich, Ellen and Rauert-Wunderlich, Hilka and Solimando, Antonio Giovanni and Ott, German and Rosenwald, Andreas and Beilhack, Andreas}, title = {Inhibition of focal adhesion kinase overcomes resistance of mantle cell lymphoma to ibrutinib in the bone marrow microenvironment}, series = {Haematologica}, volume = {103}, journal = {Haematologica}, number = {1}, doi = {10.3324/haematol.2017.177162}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-227117}, pages = {116-125}, year = {2019}, abstract = {Mantle cell lymphoma and other lymphoma subtypes often spread to the bone marrow, and stromal interactions mediated by focal adhesion kinase frequently enhance survival and drug resistance of the lymphoma cells. To study the role of focal adhesion kinase in mantle cell lymphoma, immunohistochemistry of primary cases and functional analysis of mantle cell lymphoma cell lines and primary mantle cell lymphoma cells co-cultured with bone marrow stromal cells (BMSC) using small molecule inhibitors and RNAi-based focal adhesion kinase silencing was performed. We showed that focal adhesion kinase is highly expressed in bone marrow infiltrates of mantle cell lymphoma and in mantle cell lymphoma cell lines. Stroma-mediated activation of focal adhesion kinase led to activation of multiple kinases (AKT, p42/44 and NF-kappa B), that are important for prosurvival and proliferation signaling. Interestingly, RNAi-based focal adhesion kinase silencing or inhibition with small molecule inhibitors (FAKi) resulted in blockage of targeted cell invasion and induced apoptosis by inactivation of multiple signaling cascades, including the classic and alternative NF-kappa B pathway. In addition, the combined treatment of ibrutinib and FAKi was highly synergistic, and ibrutinib resistance of mantle cell lymphoma could be overcome. These data demonstrate that focal adhesion kinase is important for stroma-mediated survival and drug resistance in mantle cell lymphoma, providing indications for a targeted therapeutic strategy.}, subject = {Multiple}, language = {en} } @article{McFlederMakhotkinaGrohetal.2023, author = {McFleder, Rhonda L. and Makhotkina, Anastasiia and Groh, Janos and Keber, Ursula and Imdahl, Fabian and Pe{\~n}a Mosca, Josefina and Peteranderl, Alina and Wu, Jingjing and Tabuchi, Sawako and Hoffmann, Jan and Karl, Ann-Kathrin and Pagenstecher, Axel and Vogel, J{\"o}rg and Beilhack, Andreas and Koprich, James B. and Brotchie, Jonathan M. and Saliba, Antoine-Emmanuel and Volkmann, Jens and Ip, Chi Wang}, title = {Brain-to-gut trafficking of alpha-synuclein by CD11c\(^+\) cells in a mouse model of Parkinson's disease}, series = {Nature Communications}, volume = {14}, journal = {Nature Communications}, doi = {10.1038/s41467-023-43224-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-357696}, year = {2023}, abstract = {Inflammation in the brain and gut is a critical component of several neurological diseases, such as Parkinson's disease (PD). One trigger of the immune system in PD is aggregation of the pre-synaptic protein, α-synuclein (αSyn). Understanding the mechanism of propagation of αSyn aggregates is essential to developing disease-modifying therapeutics. Using a brain-first mouse model of PD, we demonstrate αSyn trafficking from the brain to the ileum of male mice. Immunohistochemistry revealed that the ileal αSyn aggregations are contained within CD11c+ cells. Using single-cell RNA sequencing, we demonstrate that ileal CD11c\(^+\) cells are microglia-like and the same subtype of cells is activated in the brain and ileum of PD mice. Moreover, by utilizing mice expressing the photo-convertible protein, Dendra2, we show that CD11c\(^+\) cells traffic from the brain to the ileum. Together these data provide a mechanism of αSyn trafficking between the brain and gut.}, language = {en} } @article{HaakeHaackSchaeferetal.2023, author = {Haake, Markus and Haack, Beatrice and Sch{\"a}fer, Tina and Harter, Patrick N. and Mattavelli, Greta and Eiring, Patrick and Vashist, Neha and Wedekink, Florian and Genssler, Sabrina and Fischer, Birgitt and Dahlhoff, Julia and Mokhtari, Fatemeh and Kuzkina, Anastasia and Welters, Marij J. P. and Benz, Tamara M. and Sorger, Lena and Thiemann, Vincent and Almanzar, Giovanni and Selle, Martina and Thein, Klara and Sp{\"a}th, Jacob and Gonzalez, Maria Cecilia and Reitinger, Carmen and Ipsen-Escobedo, Andrea and Wistuba-Hamprecht, Kilian and Eichler, Kristin and Filipski, Katharina and Zeiner, Pia S. and Beschorner, Rudi and Goedemans, Renske and Gogolla, Falk Hagen and Hackl, Hubert and Rooswinkel, Rogier W. and Thiem, Alexander and Romer Roche, Paula and Joshi, Hemant and P{\"u}hringer, Dirk and W{\"o}ckel, Achim and Diessner, Joachim E. and R{\"u}diger, Manfred and Leo, Eugen and Cheng, Phil F. and Levesque, Mitchell P. and Goebeler, Matthias and Sauer, Markus and Nimmerjahn, Falk and Schuberth-Wagner, Christine and Felten, Stefanie von and Mittelbronn, Michel and Mehling, Matthias and Beilhack, Andreas and van der Burg, Sjoerd H. and Riedel, Angela and Weide, Benjamin and Dummer, Reinhard and Wischhusen, J{\"o}rg}, title = {Tumor-derived GDF-15 blocks LFA-1 dependent T cell recruitment and suppresses responses to anti-PD-1 treatment}, series = {Nature Communications}, volume = {14}, journal = {Nature Communications}, doi = {10.1038/s41467-023-39817-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-357333}, year = {2023}, abstract = {Immune checkpoint blockade therapy is beneficial and even curative for some cancer patients. However, the majority don't respond to immune therapy. Across different tumor types, pre-existing T cell infiltrates predict response to checkpoint-based immunotherapy. Based on in vitro pharmacological studies, mouse models and analyses of human melanoma patients, we show that the cytokine GDF-15 impairs LFA-1/β2-integrin-mediated adhesion of T cells to activated endothelial cells, which is a pre-requisite of T cell extravasation. In melanoma patients, GDF-15 serum levels strongly correlate with failure of PD-1-based immune checkpoint blockade therapy. Neutralization of GDF-15 improves both T cell trafficking and therapy efficiency in murine tumor models. Thus GDF-15, beside its known role in cancer-related anorexia and cachexia, emerges as a regulator of T cell extravasation into the tumor microenvironment, which provides an even stronger rationale for therapeutic anti-GDF-15 antibody development.}, language = {en} }