@phdthesis{Bengel2019, author = {Bengel, Melanie}, title = {In vitro Testung neuer Anwendungsformen kalth{\"a}rtender Knochenzemente aus resorbierbaren Orthophosphaten}, doi = {10.25972/OPUS-18643}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-186435}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Ziel der vorliegenden Arbeit war die Herstellung und Erprobung von innovativen Anwendungsformen kalth{\"a}rtender Knochenersatzmaterialien aus Calcium-, und Magnesiumphosphaten, die nach dem Abbindevorgang vorzugsweise aus dem Mineral Struvit (MgNH4PO4·6H2O) bestehen. Diese neuartigen Knochenzemente versprechen im Vergleich zu den herk{\"o}mmlichen Knochenersatzmaterialien eine deutlich schnellere kn{\"o}cherne Regeneration und Abbaubarkeit. Damit wird das Ziel verfolgt schneller Implantate setzen zu k{\"o}nnen und dem Patienten somit eine lange Wartezeit und dementsprechenden Leidensdruck ersparen zu k{\"o}nnen. Ebenso m{\"u}ssen konventionelle Produkte erst im OP anger{\"u}hrt und hiernach in einem schmalen Zeitfenser verarbeitet werden. Die pr{\"a}fabrizierten Zement-Pasten sind dagegen direkt applikationsbereit und h{\"a}rten erst nach Kontakt mit dem feuchten Milieu aus. In vorangegangenen Projekten wurden sowohl pr{\"a}fabrizierte Pasten als auch Granulate auf Basis Struvit-bildender Calcium-Magnesiumphosphate erfolgreich entwickelt. Vorteil dieser Granulate ist ihre sph{\"a}rische Form. Im Hinblick auf die klinische Anwendbarkeit sollten in der vorliegenden Studie beide Anwendungsformen vorgreifend auf eine tierexperimentelle Studie hinsichtlich ihrer Materialeigenschaften in vitro getestet werden.}, subject = {Knochenzemente}, language = {de} } @article{FuchsKreczyBrueckneretal.2022, author = {Fuchs, Andreas and Kreczy, Dorothea and Br{\"u}ckner, Theresa and Gbureck, Uwe and Stahlhut, Philipp and Bengel, Melanie and Hoess, Andreas and Nies, Berthold and Bator, Julia and Klammert, Uwe and Linz, Christian and Ewald, Andrea}, title = {Bone regeneration capacity of newly developed spherical magnesium phosphate cement granules}, series = {Clinical Oral Investigations}, volume = {26}, journal = {Clinical Oral Investigations}, number = {3}, issn = {1436-3771}, doi = {10.1007/s00784-021-04231-w}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-268872}, pages = {2619-2633}, year = {2022}, abstract = {Objectives Magnesium phosphate-based cements begin to catch more attention as bone substitute materials and especially as alternatives for the more commonly used calcium phosphates. In bone substitutes for augmentation purposes, atraumatic materials with good biocompatibility and resorbability are favorable. In the current study, we describe the in vivo testing of novel bone augmentation materials in form of spherical granules based on a calcium-doped magnesium phosphate (CaMgP) cement. Materials and Methods Granules with diameters between 500 and 710 μm were fabricated via the emulsification of CaMgP cement pastes in a lipophilic liquid. As basic material, two different CaMgP formulations were used. The obtained granules were implanted into drill hole defects at the distal femoral condyle of 27 New Zealand white rabbits for 6 and 12 weeks. After explantation, the femora were examined via X-ray diffraction analysis, histological staining, radiological examination, and EDX measurement. Results Both granule types display excellent biocompatibility without any signs of inflammation and allow for proper bone healing without the interposition of connective tissue. CaMgP granules show a fast and continuous degradation and enable fully adequate bone regeneration. Conclusions Due to their biocompatibility, their degradation behavior, and their completely spherical morphology, these CaMgP granules present a promising bone substitute material for bone augmentation procedures, especially in sensitive areas. Clinical Relevance The mostly insufficient local bone supply after tooth extractions complicates prosthetic dental restoration or makes it even impossible. Therefore, bone augmentation procedures are oftentimes inevitable. Spherical CaMgP granules may represent a valuable bone replacement material in many situations.}, language = {en} }