@article{MihatschBeissertPomperetal.2022, author = {Mihatsch, Patrick W. and Beissert, Matthias and Pomper, Martin G. and Bley, Thorsten A. and Seitz, Anna K. and K{\"u}bler, Hubert and Buck, Andreas K. and Rowe, Steven P. and Serfling, Sebastian E. and Hartrampf, Philipp E. and Werner, Rudolf A.}, title = {Changing threshold-based segmentation has no relevant impact on semi-quantification in the context of structured reporting for PSMA-PET/CT}, series = {Cancers}, volume = {14}, journal = {Cancers}, number = {2}, issn = {2072-6694}, doi = {10.3390/cancers14020270}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-254782}, year = {2022}, abstract = {Prostate-specific membrane antigen (PSMA)-directed positron emission tomography/computed tomography (PET/CT) is increasingly utilized for staging of men with prostate cancer (PC). To increase interpretive certainty, the standardized PSMA reporting and data system (RADS) has been proposed. Using PSMA-RADS, we characterized lesions in 18 patients imaged with \(^{18}\)F-PSMA-1007 PET/CT for primary staging and determined the stability of semi-quantitative parameters. Six hundred twenty-three lesions were categorized according to PSMA-RADS and manually segmented. In this context, PSMA-RADS-3A (soft-tissue) or -3B (bone) lesions are defined as being indeterminate for the presence of PC. For PMSA-RADS-4 and -5 lesions; however, PC is highly likely or almost certainly present [with further distinction based on absence (PSMA-RADS-4) or presence (PSMA-RADS-5) of correlative findings on CT]. Standardized uptake values (SUV\(_{max}\), SUV\(_{peak}\), SUV\(_{mean}\)) were recorded, and volumetric parameters [PSMA-derived tumor volume (PSMA-TV); total lesion PSMA (TL-PSMA)] were determined using different maximum intensity thresholds (MIT) (40 vs. 45 vs. 50\%). SUV\(_{max}\) was significantly higher in PSMA-RADS-5 lesions compared to all other PSMA-RADS categories (p ≤ 0.0322). In particular, the clinically challenging PSMA-RADS-3A lesions showed significantly lower SUV\(_{max}\) and SUV\(_{peak}\) compared to the entire PSMA-RADS-4 or -5 cohort (p < 0.0001), while for PSMA-RADS-3B this only applies when compared to the entire PSMA-RADS-5 cohort (p < 0.0001), but not to the PSMA-RADS-4 cohort (SUV\(_{max}\), p = 0.07; SUV\(_{peak}\), p = 0.08). SUV\(_{mean}\) (p = 0.30) and TL-PSMA (p = 0.16) in PSMA-RADS-5 lesions were not influenced by changing the MIT, while PSMA-TV showed significant differences when comparing 40 vs. 50\% MIT (p = 0.0066), which was driven by lymph nodes (p = 0.0239), but not bone lesions (p = 0.15). SUV\(_{max}\) was significantly higher in PSMA-RADS-5 lesions compared to all other PSMA-RADS categories in \(^{18}\)F-PSMA-1007 PET/CT. As such, the latter parameter may assist the interpreting molecular imaging specialist in assigning the correct PSMA-RADS score to sites of disease, thereby increasing diagnostic certainty. In addition, changes of the MIT in PSMA-RADS-5 lesions had no significant impact on SUV\(_{mean}\) and TL-PSMA in contrast to PSMA-TV.}, language = {en} }