@unpublished{HeidenreichGassenmaierAnkenbrandetal.2021, author = {Heidenreich, Julius F. and Gassenmaier, Tobias and Ankenbrand, Markus J. and Bley, Thorsten A. and Wech, Tobias}, title = {Self-configuring nnU-net pipeline enables fully automatic infarct segmentation in late enhancement MRI after myocardial infarction}, edition = {accepted version}, doi = {10.1016/j.ejrad.2021.109817}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-323418}, year = {2021}, abstract = {Purpose To fully automatically derive quantitative parameters from late gadolinium enhancement (LGE) cardiac MR (CMR) in patients with myocardial infarction and to investigate if phase sensitive or magnitude reconstructions or a combination of both results in best segmentation accuracy. Methods In this retrospective single center study, a convolutional neural network with a U-Net architecture with a self-configuring framework ("nnU-net") was trained for segmentation of left ventricular myocardium and infarct zone in LGE-CMR. A database of 170 examinations from 78 patients with history of myocardial infarction was assembled. Separate fitting of the model was performed, using phase sensitive inversion recovery, the magnitude reconstruction or both contrasts as input channels. Manual labelling served as ground truth. In a subset of 10 patients, the performance of the trained models was evaluated and quantitatively compared by determination of the S{\o}rensen-Dice similarity coefficient (DSC) and volumes of the infarct zone compared with the manual ground truth using Pearson's r correlation and Bland-Altman analysis. Results The model achieved high similarity coefficients for myocardium and scar tissue. No significant difference was observed between using PSIR, magnitude reconstruction or both contrasts as input (PSIR and MAG; mean DSC: 0.83 ± 0.03 for myocardium and 0.72 ± 0.08 for scars). A strong correlation for volumes of infarct zone was observed between manual and model-based approach (r = 0.96), with a significant underestimation of the volumes obtained from the neural network. Conclusion The self-configuring nnU-net achieves predictions with strong agreement compared to manual segmentation, proving the potential as a promising tool to provide fully automatic quantitative evaluation of LGE-CMR.}, language = {en} } @article{PetritschKoestlerGassenmaieretal.2016, author = {Petritsch, Bernhard and K{\"o}stler, Herbert and Gassenmaier, Tobias and Kunz, Andreas S and Bley, Thorsten A and Horn, Michael}, title = {An investigation into potential gender-specific differences in myocardial triglyceride content assessed by \(^{1}\)H-Magnetic Resonance Spectroscopy at 3Tesla}, series = {Journal of International Medical Research}, volume = {44}, journal = {Journal of International Medical Research}, number = {3}, doi = {10.1177/0300060515603884}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-168808}, pages = {585-591}, year = {2016}, abstract = {Objective: Over the past decade, myocardial triglyceride content has become an accepted biomarker for chronic metabolic and cardiac disease. The purpose of this study was to use proton (hydrogen 1)-magnetic resonance spectroscopy (\(^{1}\)H-MRS) at 3Tesla (3 T) field strength to assess potential gender-related differences in myocardial triglyceride content in healthy individuals. Methods: Cardiac MR imaging was performed to enable accurate voxel placement and obtain functional and morphological information. Double triggered (i.e., ECG and respiratory motion gating) \(^{1}\)H-MRS was used to quantify myocardial triglyceride levels for each gender. Two-sample t-test and Mann-Whitney U-test were used for statistical analyses. Results: In total, 40 healthy volunteers (22 male, 18 female; aged >18 years and age matched) were included in the study. Median myocardial triglyceride content was 0.28\% (interquartile range [IQR] 0.17-0.42\%) in male and 0.24\% (IQR 0.14-0.45\%) in female participants, and no statistically significant difference was observed between the genders. Furthermore, no gender-specific difference in ejection fraction was observed, although on average, male participants presented with a higher mean ± SD left ventricular mass (136.3 ± 25.2 g) than female participants (103.9 ± 16.1 g). Conclusions: The study showed that \(^{1}\)H-MRS is a capable, noninvasive tool for acquisition of myocardial triglyceride metabolites. Myocardial triglyceride concentration was shown to be unrelated to gender in this group of healthy volunteers.}, language = {en} } @article{SauerGoltzGassenmaieretal.2014, author = {Sauer, Stephanie and Goltz, Jan P. and Gassenmaier, Tobias and Kunz, Andreas S. and Bley, Thorsten A. and Klein, Detlef and Petritsch, Bernhard}, title = {Partial Segmental Thrombosis of the Corpus Cavernosum (PSTCC) diagnosed by contrast-enhanced ultrasound: a case report}, series = {BMC Urology}, volume = {14}, journal = {BMC Urology}, number = {100}, doi = {10.1186/1471-2490-14-100}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-126495}, year = {2014}, abstract = {Background Partial segmental thrombosis of the corpus cavernosum (PSTCC) is a rare disease predominantly occurring in young men. Cardinal symptoms are pain and perineal swelling. Although several risk factors are described in the literature, the exact etiology of penile thrombosis remains unclear in most cases. MRI or ultrasound (US) is usually used for diagnosing this condition. Case presentation We report a case of penile thrombosis after left-sided varicocele ligature in a young patient. The diagnosis was established using contrast-enhanced ultrasound (CEUS) and was confirmed by contrast-enhanced magnetic resonance imaging (ceMRI). Successful conservative treatment consisted of systemic anticoagulation using low molecular weight heparin and acetylsalicylic acid. Conclusion PSTCC is a rare condition in young men and appears with massive pain and perineal swelling. In case of suspected PSTCC utilization of CEUS may be of diagnostic benefit.}, language = {en} }