@article{BluemelLinkeHerrmannetal.2016, author = {Bluemel, Christina and Linke, Fraenze and Herrmann, Ken and Simunovic, Iva and Eiber, Matthias and Kestler, Christian and Buck, Andreas K. and Schirbel, Andreas and Bley, Thorsten A. and Wester, Hans-Juergen and Vergho, Daniel and Becker, Axel}, title = {Impact of \(^{68}\)Ga-PSMA PET/CT on salvage radiotherapy planning in patients with prostate cancer and persisting PSA values or biochemical relapse after prostatectomy}, series = {EJNMMI Research}, volume = {6}, journal = {EJNMMI Research}, number = {78}, doi = {10.1186/s13550-016-0233-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-147798}, year = {2016}, abstract = {Background Salvage radiotherapy (SRT) is clinically established in prostate cancer (PC) patients with PSA persistence or biochemical relapse (BCR) after prior radical surgery. PET/CT imaging prior to SRT may be performed to localize disease recurrence. The recently introduced \(^{68}\)Ga-PSMA outperforms other PET tracers for detection of recurrence and is therefore expected also to impact radiation planning. Forty-five patients with PSA persistence (16 pts) or BCR (29 pts) after prior prostatectomy, scheduled to undergo SRT of the prostate bed, underwent \(^{68}\)Ga-PSMA PET/CT. The median PSA level was 0.67 ng/ml. The impact of \(^{68}\)Ga-PSMA PET/CT on the treatment decision was assessed. Patients with oligometastatic (≤5 lesions) PC underwent radiotherapy (RT), with the extent of the RT area and dose escalation being based on PET positivity. Results Suspicious lesions were detected in 24/45 (53.3 \%) patients. In 62.5 \% of patients, lesions were only detected by 68Ga-PSMA PET. Treatment was changed in 19/45 (42.2 \%) patients, e.g., extending SRT to metastases (9/19), administering dose escalation in patients with morphological local recurrence (6/19), or replacing SRT by systemic therapy (2/19). 38/45 (84.4 \%) followed the treatment recommendation, with data on clinical follow-up being available in 21 patients treated with SRT. All but one showed biochemical response (mean PSA decline 78 ± 19 \%) within a mean follow-up of 8.12 ± 5.23 months. Conclusions \(^{68}\)Ga-PSMA PET/CT impacts treatment planning in more than 40 \% of patients scheduled to undergo SRT. Future prospective studies are needed to confirm this significant therapeutic impact on patients prior to SRT.}, language = {en} } @article{MihatschBeissertPomperetal.2022, author = {Mihatsch, Patrick W. and Beissert, Matthias and Pomper, Martin G. and Bley, Thorsten A. and Seitz, Anna K. and K{\"u}bler, Hubert and Buck, Andreas K. and Rowe, Steven P. and Serfling, Sebastian E. and Hartrampf, Philipp E. and Werner, Rudolf A.}, title = {Changing threshold-based segmentation has no relevant impact on semi-quantification in the context of structured reporting for PSMA-PET/CT}, series = {Cancers}, volume = {14}, journal = {Cancers}, number = {2}, issn = {2072-6694}, doi = {10.3390/cancers14020270}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-254782}, year = {2022}, abstract = {Prostate-specific membrane antigen (PSMA)-directed positron emission tomography/computed tomography (PET/CT) is increasingly utilized for staging of men with prostate cancer (PC). To increase interpretive certainty, the standardized PSMA reporting and data system (RADS) has been proposed. Using PSMA-RADS, we characterized lesions in 18 patients imaged with \(^{18}\)F-PSMA-1007 PET/CT for primary staging and determined the stability of semi-quantitative parameters. Six hundred twenty-three lesions were categorized according to PSMA-RADS and manually segmented. In this context, PSMA-RADS-3A (soft-tissue) or -3B (bone) lesions are defined as being indeterminate for the presence of PC. For PMSA-RADS-4 and -5 lesions; however, PC is highly likely or almost certainly present [with further distinction based on absence (PSMA-RADS-4) or presence (PSMA-RADS-5) of correlative findings on CT]. Standardized uptake values (SUV\(_{max}\), SUV\(_{peak}\), SUV\(_{mean}\)) were recorded, and volumetric parameters [PSMA-derived tumor volume (PSMA-TV); total lesion PSMA (TL-PSMA)] were determined using different maximum intensity thresholds (MIT) (40 vs. 45 vs. 50\%). SUV\(_{max}\) was significantly higher in PSMA-RADS-5 lesions compared to all other PSMA-RADS categories (p ≤ 0.0322). In particular, the clinically challenging PSMA-RADS-3A lesions showed significantly lower SUV\(_{max}\) and SUV\(_{peak}\) compared to the entire PSMA-RADS-4 or -5 cohort (p < 0.0001), while for PSMA-RADS-3B this only applies when compared to the entire PSMA-RADS-5 cohort (p < 0.0001), but not to the PSMA-RADS-4 cohort (SUV\(_{max}\), p = 0.07; SUV\(_{peak}\), p = 0.08). SUV\(_{mean}\) (p = 0.30) and TL-PSMA (p = 0.16) in PSMA-RADS-5 lesions were not influenced by changing the MIT, while PSMA-TV showed significant differences when comparing 40 vs. 50\% MIT (p = 0.0066), which was driven by lymph nodes (p = 0.0239), but not bone lesions (p = 0.15). SUV\(_{max}\) was significantly higher in PSMA-RADS-5 lesions compared to all other PSMA-RADS categories in \(^{18}\)F-PSMA-1007 PET/CT. As such, the latter parameter may assist the interpreting molecular imaging specialist in assigning the correct PSMA-RADS score to sites of disease, thereby increasing diagnostic certainty. In addition, changes of the MIT in PSMA-RADS-5 lesions had no significant impact on SUV\(_{mean}\) and TL-PSMA in contrast to PSMA-TV.}, language = {en} }