@article{GrunzPennigFieberetal.2021, author = {Grunz, Jan-Peter and Pennig, Lenhard and Fieber, Tabea and Gietzen, Carsten Herbert and Heidenreich, Julius Frederik and Huflage, Henner and Gruschwitz, Philipp and Kuhl, Philipp Josef and Petritsch, Bernhard and Kosmala, Aleksander and Bley, Thorsten Alexander and Gassenmaier, Tobias}, title = {Twin robotic x-ray system in small bone and joint trauma: Impact of cone-beam computed tomography on treatment decisions}, series = {European Radiology}, volume = {31}, journal = {European Radiology}, issn = {0938-7994}, doi = {10.1007/s00330-020-07563-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-235233}, pages = {3600-3609}, year = {2021}, abstract = {Objectives Trauma evaluation of extremities can be challenging in conventional radiography. A multi-use x-ray system with cone-beam CT (CBCT) option facilitates ancillary 3-D imaging without repositioning. We assessed the clinical value of CBCT scans by analyzing the influence of additional findings on therapy. Methods Ninety-two patients underwent radiography and subsequent CBCT imaging with the twin robotic scanner (76 wrist/hand/finger and 16 ankle/foot/toe trauma scans). Reports by on-call radiologists before and after CBCT were compared regarding fracture detection, joint affliction, comminuted injuries, and diagnostic confidence. An orthopedic surgeon recommended therapy based on reported findings. Surgical reports (N = 52) and clinical follow-up (N = 85) were used as reference standard. Results CBCT detected more fractures (83/64 of 85), joint involvements (69/53 of 71), and multi-fragment situations (68/50 of 70) than radiography (all p < 0.001). Six fractures suspected in radiographs were ruled out by CBCT. Treatment changes based on additional information from CBCT were recommended in 29 patients (31.5\%). While agreement between advised therapy before CBCT and actual treatment was moderate (κ = 0.41 [95\% confidence interval 0.35-0.47]; p < 0.001), agreement after CBCT was almost perfect (κ = 0.88 [0.83-0.93]; p < 0.001). Diagnostic confidence increased considerably for CBCT studies (p < 0.001). Median effective dose for CBCT was 4.3 μSv [3.3-5.3 μSv] compared to 0.2 μSv [0.1-0.2 μSv] for radiography. Conclusions CBCT provides advantages for the evaluation of acute small bone and joint trauma by detecting and excluding extremity fractures and fracture-related findings more reliably than radiographs. Additional findings induced therapy change in one third of patients, suggesting substantial clinical impact.}, language = {en} } @article{GuggenbergerTorreLudwigetal.2022, author = {Guggenberger, Konstanze Viktoria and Torre, Giulia Dalla and Ludwig, Ute and Vogel, Patrick and Weng, Andreas Max and Vogt, Marius Lothar and Fr{\"o}hlich, Matthias and Schmalzing, Marc and Raithel, Esther and Forman, Christoph and Urbach, Horst and Meckel, Stephan and Bley, Thorsten Alexander}, title = {Vasa vasorum of proximal cerebral arteries after dural crossing - potential imaging confounder in diagnosing intracranial vasculitis in elderly subjects on black-blood MRI}, series = {European Radiology}, volume = {32}, journal = {European Radiology}, number = {2}, issn = {1432-1084}, doi = {10.1007/s00330-021-08181-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-266524}, pages = {1276-1284}, year = {2022}, abstract = {Objectives Vessel wall enhancement (VWE) may be commonly seen on MRI images of asymptomatic subjects. This study aimed to characterize the VWE of the proximal internal carotid (ICA) and vertebral arteries (VA) in a non-vasculitic elderly patient cohort. Methods Cranial MRI scans at 3 Tesla were performed in 43 patients (aged ≥ 50 years) with known malignancy for exclusion of cerebral metastases. For vessel wall imaging (VWI), a high-resolution compressed-sensing black-blood 3D T1-weighted fast (turbo) spin echo sequence (T1 CS-SPACE prototype) was applied post gadolinium with an isotropic resolution of 0.55 mm. Bilateral proximal intradural ICA and VA segments were evaluated for presence, morphology, and longitudinal extension of VWE. Results Concentric VWE of the proximal intradural ICA was found in 13 (30\%) patients, and of the proximal intradural VA in 39 (91\%) patients. Mean longitudinal extension of VWE after dural entry was 13 mm in the VA and 2 mm in the ICA. In 14 of 39 patients (36\%) with proximal intradural VWE, morphology of VWE was suggestive of the mere presence of vasa vasorum. In 25 patients (64 \%), morphology indicated atherosclerotic lesions in addition to vasa vasorum. Conclusions Vasa vasorum may account for concentric VWE within the proximal 2 mm of the ICA and 13 mm of the VA after dural entry in elderly subjects. Concentric VWE in these locations should not be confused with large artery vasculitis. Distal to these segments, VWE may be more likely related to pathologic conditions such as vasculitis.}, language = {en} } @article{WechAnkenbrandBleyetal.2022, author = {Wech, Tobias and Ankenbrand, Markus Johannes and Bley, Thorsten Alexander and Heidenreich, Julius Frederik}, title = {A data-driven semantic segmentation model for direct cardiac functional analysis based on undersampled radial MR cine series}, series = {Magnetic Resonance in Medicine}, volume = {87}, journal = {Magnetic Resonance in Medicine}, number = {2}, doi = {10.1002/mrm.29017}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-257616}, pages = {972-983}, year = {2022}, abstract = {Purpose Image acquisition and subsequent manual analysis of cardiac cine MRI is time-consuming. The purpose of this study was to train and evaluate a 3D artificial neural network for semantic segmentation of radially undersampled cardiac MRI to accelerate both scan time and postprocessing. Methods A database of Cartesian short-axis MR images of the heart (148,500 images, 484 examinations) was assembled from an openly accessible database and radial undersampling was simulated. A 3D U-Net architecture was pretrained for segmentation of undersampled spatiotemporal cine MRI. Transfer learning was then performed using samples from a second database, comprising 108 non-Cartesian radial cine series of the midventricular myocardium to optimize the performance for authentic data. The performance was evaluated for different levels of undersampling by the Dice similarity coefficient (DSC) with respect to reference labels, as well as by deriving ventricular volumes and myocardial masses. Results Without transfer learning, the pretrained model performed moderately on true radial data [maximum number of projections tested, P = 196; DSC = 0.87 (left ventricle), DSC = 0.76 (myocardium), and DSC =0.64 (right ventricle)]. After transfer learning with authentic data, the predictions achieved human level even for high undersampling rates (P = 33, DSC = 0.95, 0.87, and 0.93) without significant difference compared with segmentations derived from fully sampled data. Conclusion A 3D U-Net architecture can be used for semantic segmentation of radially undersampled cine acquisitions, achieving a performance comparable with human experts in fully sampled data. This approach can jointly accelerate time-consuming cine image acquisition and cumbersome manual image analysis.}, language = {en} } @article{HuflageFieberFaerberetal.2022, author = {Huflage, Henner and Fieber, Tabea and F{\"a}rber, Christian and Knarr, Jonas and Veldhoen, Simon and Jordan, Martin C. and Gilbert, Fabian and Bley, Thorsten Alexander and Meffert, Rainer H. and Grunz, Jan-Peter and Schmalzl, Jonas}, title = {Interobserver reliability of scapula fracture classifications in intra- and extra-articular injury patterns}, series = {BMC Musculoskeletal Disorders}, volume = {23}, journal = {BMC Musculoskeletal Disorders}, number = {1}, doi = {10.1186/s12891-022-05146-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-299795}, year = {2022}, abstract = {Background Morphology and glenoid involvement determine the necessity of surgical management in scapula fractures. While being present in only a small share of patients with shoulder trauma, numerous classification systems have been in use over the years for categorization of scapula fractures. The purpose of this study was to evaluate the established AO/OTA classification in comparison to the classification system of Euler and R{\"u}edi (ER) with regard to interobserver reliability and confidence in clinical practice. Methods Based on CT imaging, 149 patients with scapula fractures were retrospectively categorized by two trauma surgeons and two radiologists using the classification systems of ER and AO/OTA. To measure the interrater reliability, Fleiss kappa (κ) was calculated independently for both fracture classifications. Rater confidence was stated subjectively on a five-point scale and compared with Wilcoxon signed rank tests. Additionally, we computed the intraclass correlation coefficient (ICC) based on absolute agreement in a two-way random effects model to assess the diagnostic confidence agreement between observers. Results In scapula fractures involving the glenoid fossa, interrater reliability was substantial (κ = 0.722; 95\% confidence interval [CI] 0.676-0.769) for the AO/OTA classification in contrast to moderate agreement (κ = 0.579; 95\% CI 0.525-0.634) for the ER classification system. Diagnostic confidence for intra-articular fracture patterns was superior using the AO/OTA classification compared to ER (p < 0.001) with higher confidence agreement (ICC: 0.882 versus 0.831). For extra-articular fractures, ER (κ = 0.817; 95\% CI 0.771-0.863) provided better interrater reliability compared to AO/OTA (κ = 0.734; 95\% CI 0.692-0.776) with higher diagnostic confidence (p < 0.001) and superior agreement between confidence ratings (ICC: 0.881 versus 0.912). Conclusions The AO/OTA classification is most suitable to categorize intra-articular scapula fractures with glenoid involvement, whereas the classification system of Euler and R{\"u}edi appears to be superior in extra-articular injury patterns with fractures involving only the scapula body, spine, acromion and coracoid process.}, language = {en} } @article{ReichelHerzelTabbakhetal.2021, author = {Reichel, Thomas and Herz, Stefan and el Tabbakh, Mohammed and Bley, Thorsten Alexander and Plumhoff, Piet and Rueckl, Kilian}, title = {Less than 9.5-mm coracohumeral distance on axial magnetic resonance imaging scans predicts for subscapularis tear}, series = {JSES International}, volume = {5}, journal = {JSES International}, number = {3}, doi = {10.1016/j.jseint.2021.01.014}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259118}, pages = {424-429}, year = {2021}, abstract = {Background Diagnosis of subscapularis (SSC) tendon lesions on magnetic resonance imaging (MRI) can be challenging. A small coracohumeral distance (CHD) has been associated with SSC tears. This study was designed to define a specific threshold value for CHD to predict SSC tears on axial MRI scans. Methods This retrospective study included 172 shoulders of 168 patients who underwent arthroscopic surgery for rotator cuff tear or glenohumeral instability. Diagnostic arthroscopy confirmed an SSC tear in 62 cases (36.0\%, test group a), rotator cuff tear tears other than SSC in 71 cases (41.3\%, control group b) and glenohumeral instability without any rotator cuff tear in 39 cases (22.7\%, zero-sample group c). All patients had a preoperative MRI of the shoulder (1.5T or 3T). Minimum CHD was measured on axial fat-suppressed proton density-, T2-, or T1-weigthed sequences. Receiver operating characteristics analysis was used to determine the threshold value for CHD, and sensitivity and specificity were calculated. Results CHD measurement had a good interobserver reliability (Intraclass correlation coefficient 0.799). Mean CHD was highly significantly (P < .001) less for test group a (mean 7.3 mm, standard deviation ± 2.2) compared with control group b (mean 11.1 mm, standard deviation ± 2.3) or zero-sample group c (mean 13.6 mm, standard deviation ± 2.9). A threshold value of CHD <9.5 mm had a sensitivity of 83.6\% and a specificity of 83.9\% to predict SSC tears. Conclusion A CHD <9.5 mm on MRI is predictive of SSC lesions and a valuable tool to diagnose SSC tears.}, language = {en} } @article{GrunzGietzenLuetkensetal.2020, author = {Grunz, Jan-Peter and Gietzen, Carsten Herbert and Luetkens, Karsten and Wagner, Matthias and Kalb, Karlheinz and Bley, Thorsten Alexander and Lehmkul, Luka and van Schoonhoven, J{\"o}rg and Gassenmaier, Tobias and Schmitt, Rainer}, title = {The importance of radial multiplanar reconstructions for assessment of triangular fibrocartilage complex injury in CT arthrography of the wrist}, series = {BMC Musculoskeletal Disorders}, volume = {21}, journal = {BMC Musculoskeletal Disorders}, doi = {10.1186/s12891-020-03321-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-236075}, year = {2020}, abstract = {Background: Triangular fibrocartilage complex (TFCC) lesions commonly cause ulnar-sided wrist pain and instability of the distal radioulnar joint. Due to its triangular shape, discontinuity of the TFCC is oftentimes difficult to visualize in radiological standard planes. Radial multiplanar reconstructions (MPR) may have the potential to simplify diagnosis in CT wrist arthrography. The objective of this study was to assess diagnostic advantages provided by radial MPR over standard planes for TFCC lesions in CT arthrography. Methods: One hundred six patients (49 women, 57 men; mean age 44.2 ± 15.8 years) underwent CT imaging after wrist arthrography. Two radiologists (R1, R2) retrospectively analyzed three randomized datasets for each CT arthrography. One set contained axial, coronal and sagittal planes (MPR\(_{Standard}\)), while the other two included an additional radial reconstruction with the rotating center either atop the ulnar styloid (MPR\(_{Styloid}\)) or in the ulnar fovea (MPR\(_{Fovea}\)). Readers evaluated TFCC differentiability and condition. Suspected lesions were categorized using Palmer's and Atzei's classification and diagnostic confidence was stated on a fivepoint Likert scale. Results: Compared to standard planes, differentiability of the superficial and deep TFCC layer was superior in radial reconstructions (R1/R2; MPR\(_{Fovea}\): p < 0.001; MPRStyloid: p ≤ 0.007). Palmer and Atzei lesions were present in 86.8\% (92/106) and 52.8\% (56/106) of patients, respectively. Specificity, sensitivity and accuracy for central Palmer lesions did not differ in radial and standard MPR. For peripheral Atzei lesions, sensitivity (MPR\(_{Standard}\) 78.6\%/80.4\%, MPR\(_{Styloid}\) 94.6\%/94.6\%, MPR\(_{Fovea}\) 91.1\%/89.3\%) and accuracy (MPR\(_{Standard}\) 86.8\%/86.8\%, MPR\(_{Styloid}\) 96.2\%/96.2\%, MPR\(_{Fovea}\) 94.3\%/93.4\%) improved with additional styloid-centered (p = 0.004/0.008) and foveacentered (p = 0.039/0.125) reconstructions. No substantial difference was observed between both radial MPR (p = 0.688/0.250). Interrater agreement was almost perfect for each dataset (κ\(_{Standard}\) = 0.876, κ\(_{Styloid}\) = 0.894, κ\(_{Fovea}\) = 0.949). Diagnostic confidence increased with addition of either radial MPR (p < 0.001). Conclusions: Ancillary radial planes improve accuracy and diagnostic confidence for detection of peripheral TFCC lesions in CT arthrography of the wrist.}, language = {en} } @article{LuetkensErguenHuflageetal.2021, author = {Luetkens, Karsten Sebastian and Erg{\"u}n, S{\"u}leyman and Huflage, Henner and Kunz, Andreas Steven and Gietzen, Carsten Herbert and Conrads, Nora and Pennig, Lenhard and Goertz, Lukas and Bley, Thorsten Alexander and Gassenmaier, Tobias and Grunz, Jan-Peter}, title = {Dose reduction potential in cone-beam CT imaging of upper extremity joints with a twin robotic x-ray system}, series = {Scientific Reports}, volume = {11}, journal = {Scientific Reports}, number = {1}, doi = {10.1038/s41598-021-99748-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-270429}, year = {2021}, abstract = {Cone-beam computed tomography is a powerful tool for 3D imaging of the appendicular skeleton, facilitating detailed visualization of bone microarchitecture. This study evaluated various combinations of acquisition and reconstruction parameters for the cone-beam CT mode of a twin robotic x-ray system in cadaveric wrist and elbow scans, aiming to define the best possible trade-off between image quality and radiation dose. Images were acquired with different combinations of tube voltage and tube current-time product, resulting in five scan protocols with varying volume CT dose indices: full-dose (FD; 17.4 mGy), low-dose (LD; 4.5 mGy), ultra-low-dose (ULD; 1.15 mGy), modulated low-dose (mLD; 0.6 mGy) and modulated ultra-low-dose (mULD; 0.29 mGy). Each set of projection data was reconstructed with three convolution kernels (very sharp [Ur77], sharp [Br69], intermediate [Br62]). Five radiologists subjectively assessed the image quality of cortical bone, cancellous bone and soft tissue using seven-point scales. Irrespective of the reconstruction kernel, overall image quality of every FD, LD and ULD scan was deemed suitable for diagnostic use in contrast to mLD (very sharp/sharp/intermediate: 60/55/70\%) and mULD (0/3/5\%). Superior depiction of cortical and cancellous bone was achieved in FD\(_{Ur77}\) and LD\(_{Ur77}\) examinations (p < 0.001) with LD\(_{Ur77}\) scans also providing favorable bone visualization compared to FD\(_{Br69}\) and FD\(_{Br62}\) (p < 0.001). Fleiss' kappa was 0.618 (0.594-0.641; p < 0.001), indicating substantial interrater reliability. In this study, we demonstrate that considerable dose reduction can be realized while maintaining diagnostic image quality in upper extremity joint scans with the cone-beam CT mode of a twin robotic x-ray system. Application of sharper convolution kernels for image reconstruction facilitates superior display of bone microarchitecture.}, language = {en} } @article{GrunzWenigKunzetal.2020, author = {Grunz, Jan-Peter and Wenig, Andreas Max and Kunz, Andreas Steven and Veyhl-Wichmann, Maike and Schmitt, Rainer and Gietzen, Carsten Herbert and Pennig, Lenhard and Herz, Stefan and Erg{\"u}n, S{\"u}leyman and Bley, Thorsten Alexander and Gassenmaier, Tobias}, title = {3D cone-beam CT with a twin robotic x-ray system in elbow imaging: comparison of image quality to high-resolution multidetector CT}, series = {European Radiology Experimental}, volume = {4}, journal = {European Radiology Experimental}, doi = {10.1186/s41747-020-00177-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-229877}, year = {2020}, abstract = {Background Elbow imaging is challenging with conventional multidetector computed tomography (MDCT), while cone-beam CT (CBCT) provides superior options. We compared intra-individually CBCT versus MDCT image quality in cadaveric elbows. Methods A twin robotic x-ray system with new CBCT mode and a high-resolution clinical MDCT were compared in 16 cadaveric elbows. Both systems were operated with a dedicated low-dose (LD) protocol (equivalent volume CT dose index [CTDI\(_{vol(16 cm)}\)] = 3.3 mGy) and a regular clinical scan dose (RD) protocol (CTDI\(_{vol(16 cm)}\) = 13.8 mGy). Image quality was evaluated by two radiologists (R1 and R2) on a seven-point Likert scale, and estimation of signal intensity in cancellous bone was conducted. Wilcoxon signed-rank tests and intraclass correlation coefficient (ICC) statistics were used. Results The CBCT prototype provided superior subjective image quality compared to MDCT scans (for RD, p ≤ 0.004; for LD, p ≤ 0.001). Image quality was rated very good or excellent in 100\% of the cases by both readers for RD CBCT, 100\% (R1) and 93.8\% (R2) for LD CBCT, 62.6\% and 43.8\% for RD MDCT, and 0.0\% and 0.0\% for LD MDCT. Single-measure ICC was 0.95 (95\% confidence interval 0.91-0.97; p < 0.001). Software-based assessment supported subjective findings with less "undecided" pixels in CBCT than dose-equivalent MDCT (p < 0.001). No significant difference was found between LD CBCT and RD MDCT. Conclusions In cadaveric elbow studies, the tested cone-beam CT prototype delivered superior image quality compared to high-end multidetector CT and showed a potential for considerable dose reduction.}, language = {en} } @article{HuflageKarstenKunzetal.2021, author = {Huflage, Henner and Karsten, Sebastian and Kunz, Andreas Steven and Conrads, Nora and Jakubietz, Rafael Gregor and Jakubietz, Michael Georg and Pennig, Lenhard and Goertz, Lukas and Bley, Thorsten Alexander and Schmitt, Rainer and Grunz, Jan-Peter}, title = {Improved diagnostic accuracy for ulnar-sided TFCC lesions with radial reformation of 3D sequences in wrist MR arthrography}, series = {European Radiology}, volume = {31}, journal = {European Radiology}, number = {12}, issn = {1432-1084}, doi = {10.1007/s00330-021-08024-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-266512}, pages = {9399-9407}, year = {2021}, abstract = {Objectives Triangular fibrocartilage complex (TFCC) injuries frequently cause ulnar-sided wrist pain and can induce distal radioulnar joint instability. With its complex three-dimensional structure, diagnosis of TFCC lesions remains a challenging task even in MR arthrograms. The aim of this study was to assess the added diagnostic value of radial reformatting of isotropic 3D MRI datasets compared to standard planes after direct arthrography of the wrist. Methods Ninety-three patients underwent wrist MRI after fluoroscopy-guided multi-compartment arthrography. Two radiologists collectively analyzed two datasets of each MR arthrogram for TFCC injuries, with one set containing standard reconstructions of a 3D thin-slice sequence in axial, coronal and sagittal orientation, while the other set comprised an additional radial plane view with the rotating center positioned at the ulnar styloid. Surgical reports (whenever available) or radiological reports combined with clinical follow-up served as a standard of reference. In addition, diagnostic confidence and assessability of the central disc and ulnar-sided insertions were subjectively evaluated. Results Injuries of the articular disc, styloid and foveal ulnar attachment were present in 20 (23.7\%), 10 (10.8\%) and 9 (9.7\%) patients. Additional radial planes increased diagnostic accuracy for lesions of the styloid (0.83 vs. 0.90; p = 0.016) and foveal (0.86 vs. 0.94; p = 0.039) insertion, whereas no improvement was identified for alterations of the central cartilage disc. Readers' confidence (p < 0.001) and assessability of the ulnar-sided insertions (p < 0.001) were superior with ancillary radial reformatting. Conclusions Access to the radial plane view of isotropic 3D sequences in MR arthrography improves diagnostic accuracy and confidence for ulnar-sided TFCC lesions.}, language = {en} } @article{PetritschKosmalaWengetal.2019, author = {Petritsch, Berhard and Kosmala, Aleksander and Weng, Andreas Max and Bley, Thorsten Alexander}, title = {Tin-filtered 100kV ultra-low-dose CT of the paranasal sinus: initial clinical results}, series = {PLoS ONE}, volume = {14}, journal = {PLoS ONE}, number = {5}, doi = {10.1371/ journal.pone.0216295}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-204127}, pages = {e0216295}, year = {2019}, abstract = {Objectives To investigate the feasibility, diagnostic image quality and radiation dose of 3\(^{rd}\) generation dual-source computed tomography (CT) using a tin-filtered 100 kV protocol in patients with suspected acute inflammatory sinus disease. Methods We retrospectively evaluated 109 consecutive patients who underwent CT (Siemens SOMATOM Force, Erlangen, Germany) of the paranasal sinus with a new tin-filtered scanprotocol (Sn100 kV; tube current 35 mAs) using iterative reconstruction. Two readers independently assessed subjective image quality using a five-point Likert scale (1 = excellent, 5 = non-diagnostic). Inter-observer agreement was calculated and expressed as percentage of agreement. Noise was determined for calculation of signal-to-noise-ratio (SNR). Effective radiation dose (ED) was calculated from the dose-length-product (DLP). Results All examinations showed diagnostic image quality regarding evaluation of inflammatory sinus disease. On average, subjective general image quality was rated moderate (= 3) with a percentage of agreement between the observers of 81\%. The mean image noise was 14.3 HU. The calculated median SNR was 6.0 for intraorbital fat, and 3.6 for the vitreous body, respectively. The median DLP was 2.1 mGy*cm, resulting in a median ED of 0.012 mSv. Conclusions Taking the study limitations into account, ultra-low-dose tin-filtered CT of the paranasal sinus at a tube voltage of 100 kV utilizing an iterative reconstruction algorithm provides for reliable exclusion of suspected acute inflammatory sinus disease in 100\% of the cases.}, language = {en} } @article{AugustinWelschBleyetal.2021, author = {Augustin, Anne Marie and Welsch, Stefan and Bley, Thorsten Alexander and Lopau, Kai and Kickuth, Ralph}, title = {Color-coded summation images in the evaluation of renal artery stenosis before and after percutaneous transluminal angioplasty}, series = {BMC Medical Imaging}, volume = {21}, journal = {BMC Medical Imaging}, number = {1}, doi = {10.1186/s12880-020-00540-w}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259086}, pages = {21}, year = {2021}, abstract = {Background: Endovascular therapy is the gold standard in patients with hemodynamic relevant renal artery stenosis (RAS) resistant to medical therapy. The severity grading of the stenosis as well as the result assessment after endovascular approach is predominantly based on visible estimations of the anatomic appearance. We aim to investigate the application of color-coded DSA parameters to gain hemodynamic information during endovascular renal artery interventions and for the assessment of the procedures technical success. Methods: We retrospectively evaluated 32 patients who underwent endovascular renal artery revascularization and applied color-coded summation imaging on selected monochromatic DSA images. The differences in time to peak (dTTP) of contrast enhancement in predefined anatomical measuring points were analyzed. Furthermore, differences in systolic blood pressure values (SBP) and serum creatinine were obtained. The value of underlying diabetes mellitus as a predictor for clinical outcome was assessed. Correlation analysis between the patients gender as well as the presence of diabetes mellitus and dTTP was performed. Results: Endovascular revascularization resulted in statistically significant improvement in 4/7 regions of interest. Highly significant improvement of perfusion in terms of shortened TTP values could be found at the segmental artery level and in the intrastenotical segment (p<0.001), significant improvement prestenotical and in the apical renal parenchyma (p<0.05). In the other anatomic regions, differences revealed not to be significant. Differences between SBP and serum creatinine levels before and after the procedure were significant (p=0.004 and 0.0004). Patients ' gender as well as the presence of diabetes mellitus did not reveal to be predictors for the clinical success of the procedure. Furthermore, diabetes and gender did not show relevant correlation with dTTP in the parenchymal measuring points. Conclusions: The supplementary use of color-coding DSA and the data gained from parametric images may provide helpful information in the evaluation of the procedures ' technical success. The segmental artery might be a particularly suitable vascular territory for analyzing differences in blood flow characteristics. Further studies with larger cohorts are needed to further confirm the diagnostic value of this technique.}, language = {en} } @article{GuggenbergerBley2020, author = {Guggenberger, Konstanze Viktoria and Bley, Thorsten Alexander}, title = {Imaging in Vasculitis}, series = {Current Rheumatology Reports}, volume = {22}, journal = {Current Rheumatology Reports}, number = {34}, issn = {1523-3774}, doi = {10.1007/s11926-020-00915-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-232762}, year = {2020}, abstract = {Purpose of Review: Vasculitides are characterized by mostly autoimmunologically induced inflammatory processes of vascularstructures. They have various clinical and radiologic appearances. Early diagnosis and reliable monitoring are indispensable foradequate therapy to prevent potentially serious complications. Imaging, in addition to laboratory tests and physical examination,constitutes a key component in assessing disease extent and activity. This review presents current standards and some typicalfindings in the context of imaging in vasculitis with particular attention to large vessel vasculitides. Recent Findings: Recently, imaging has gained importance in the management of vasculitis, especially regarding large vesselvasculitides (LVV). Recently, EULAR (European League Against Rheumatism) has launched its recommendations concerningthe diagnosis of LVVs. Imaging is recommended as the preferred complement to clinical examination. Color-coded duplexsonography is considered the first choice imaging test in suspected giant cell arteritis, and magnetic resonance imaging isconsidered the first choice in suspected Takayasu'sarteritis. Summary: Due to diversity of clinical and radiologic presentations, diagnosis and therapy monitoring of vasculitides mayconstitute a challenge. As a result of ongoing technological progress, a variety of non-invasive imaging modalities now playan elemental role in the interdisciplinary management of vasculitic diseases.}, language = {en} } @article{VeldhoenBehzadiLenzetal.2017, author = {Veldhoen, Simon and Behzadi, Cyrus and Lenz, Alexander and Henes, Frank Oliver and Rybczynski, Meike and von Kodolitsch, Yskert and Bley, Thorsten Alexander and Adam, Gerhard and Bannas, Peter}, title = {Non-contrast MR angiography at 1.5 Tesla for aortic monitoring in Marfan patients after aortic root surgery}, series = {Journal of Cardiovascular Magnetic Resonance}, volume = {19}, journal = {Journal of Cardiovascular Magnetic Resonance}, number = {82}, doi = {10.1186/s12968-017-0394-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-158693}, year = {2017}, abstract = {Background: Contrast-enhanced cardiovascular magnetic resonance angiography (CE-CMRA) is the established imaging modality for patients with Marfan syndrome requiring life-long annual aortic imaging before and after aortic root replacement. Contrast-free CMRA techniques avoiding side-effects of contrast media are highly desirable for serial imaging but have not been evaluated in the postoperative setup of Marfan patients. The purpose of this study was to assess the feasibility of non-contrast balanced steady-state free precession (bSSFP) magnetic resonance imaging for aortic monitoring of postoperative patients with Marfan syndrome. Methods: Sixty-four adult Marfan patients after aortic root replacement were prospectively included. Fourteen patients (22\%) had a residual aortic dissection after surgical treatment of type A dissection. bSSFP imaging and CE-CMRA were performed at 1.5 Tesla. Two radiologists evaluated the images regarding image quality (1 = poor, 4 = excellent), artifacts (1 = severe, 4 = none) and aortic pathologies. Readers measured the aortic diameters at defined levels in both techniques. Statistics included observer agreement for image scoring and diameter measurements and ROC analyses for comparison of the diagnostic performance of bSSFP and CE-CMRA. Results: Both readers observed no significant differences in image quality between bSSFP and CE-CMRA and found a median image quality score of 4 for both techniques (all p > .05). No significant differences were found regarding the frequency of image artifacts in both sequences (all p > .05). Sensitivity and specificity for detection of aortic dissections was 100\% for both readers and techniques. Compared to bSSFP imaging, CE-CMRA resulted in higher diameters (mean bias, 0.9 mm; p < .05). The inter-observer biases of diameter measurements were not significantly different (all p > .05), except for the distal graft anastomosis (p = .001). Using both techniques, the readers correctly identified a graft suture dehiscence with aneurysm formation requiring surgery. Conclusion: Unenhanced bSSFP CMR imaging allows for riskless aortic monitoring with high diagnostic accuracy in Marfan patients after aortic root surgery.}, language = {en} } @article{ThurnerAugustinBleyetal.2022, author = {Thurner, Annette and Augustin, Anne Marie and Bley, Thorsten Alexander and Kickuth, Ralph}, title = {2D-perfusion angiography for intra-procedural endovascular treatment response assessment in chronic mesenteric ischemia: a feasibility study}, series = {BMC Medical Imaging}, volume = {22}, journal = {BMC Medical Imaging}, doi = {10.1186/s12880-022-00820-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-301131}, year = {2022}, abstract = {Background Endovascular revascularization has become the first-line treatment of chronic mesenteric ischemia (CMI). The qualitative visual analysis of digital subtraction angiography (DSA) is dependent on observer experience and prone to interpretation errors. We evaluate the feasibility of 2D-Perfusion Angiography (2D-PA) for objective, quantitative treatment response assessment in CMI. Methods 49 revascularizations in 39 patients with imaging based evidence of mesenteric vascular occlusive disease and clinical signs of CMI were included in this retrospective study. To assess perfusion changes by 2D-PA, DSA-series were post-processed using a dedicated, commercially available software. Regions of interest (ROI) were placed in the pre- and post-stenotic artery segment. In aorto-ostial disease, the inflow ROI was positioned at the mesenteric artery orifice. The ratios outflow to inflow ROI for peak density (PD), time to peak and area-under-the-curve (AUC) were computed and compared pre- and post-interventionally. We graded motion artifacts by means of a four-point scale. Feasibility of 2D-PA and changes of flow parameters were evaluated. Results Motion artifacts due to a mobile vessel location beneath the diaphragm or within the mesenteric root, branch vessel superimposition and inadequate contrast enhancement at the inflow ROI during manually conducted DSA-series via selective catheters owing to steep vessel angulation, necessitated exclusion of 26 measurements from quantitative flow evaluation. The feasibility rate was 47\%. In 23 technically feasible assessments, PD\(_{outflow}\)/PD\(_{inflow}\) increased by 65\% (p < 0.001) and AUC\(_{outflow}\)/AUC\(_{inflow}\) increased by 85\% (p < 0.001). The time to peak density values in the outflow ROI accelerated only minimally without reaching statistical significance. Age, BMI, target vessel (celiac trunk, SMA or IMA), stenosis location (ostial or truncal), calcification severity, plaque composition or the presence of a complex stenosis did not reach statistical significance in their distribution among the feasible and non-feasible group (p > 0.05). Conclusions Compared to other vascular territories and indications, the feasibility of 2D-PA in mesenteric revascularization for CMI was limited. Unfavorable anatomic conditions contributed to a high rate of inconclusive 2D-PA results.}, language = {en} } @article{GietzenKunzLuetkensetal.2022, author = {Gietzen, Carsten Herbert and Kunz, Andreas Steven and Luetkens, Karsten Sebastian and Huflage, Henner and Christopoulos, Georgios and van Schoonhoven, J{\"o}rg and Bley, Thorsten Alexander and Schmitt, Rainer and Grunz, Jan-Peter}, title = {Evaluation of prestyloid recess morphology and ulnar-sided contrast leakage in CT arthrography of the wrist}, series = {BMC Musculoskeletal Disorders}, volume = {23}, journal = {BMC Musculoskeletal Disorders}, number = {1}, doi = {10.1186/s12891-022-05241-9}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-301113}, year = {2022}, abstract = {Background In wrist arthrograms, aberrant contrast material is frequently seen extending into the soft tissue adjacent to the ulnar styloid process. Since the prestyloid recess can mimic contrast leakage in CT arthrography, this study aims to provide a detailed analysis of its morphologic variability, while investigating whether actual ulnar-sided leakage is associated with injuries of the triangular fibrocartilage complex (TFCC). Methods Eighty-six patients with positive wrist trauma history underwent multi-compartment CT arthrography (40 women, median age 44.5 years). Studies were reviewed by two board-certified radiologists, who documented the morphology of the prestyloid recess regarding size, opening type, shape and position, as well as the presence or absence of ulnar-sided contrast leakage. Correlations between leakage and the presence of TFCC injuries were assessed using the mean square contingency coefficient (r\(_{ɸ}\)). Results The most common configuration of the prestyloid recess included a narrow opening (73.26\%; width 2.26 ± 1.43 mm), saccular shape (66.28\%), and palmar position compared to the styloid process (55.81\%). Its mean length and anterior-posterior diameter were 6.89 ± 2.36 and 5.05 ± 1.97 mm, respectively. Ulnar-sided contrast leakage was reported in 29 patients (33.72\%) with a mean extent of 12.30 ± 5.31 mm. Leakage occurred more often in patients with ulnar-sided TFCC injuries (r\(_{ɸ}\) = 0.480; p < 0.001), whereas no association was found for lesions of the central articular disc (r\(_{ɸ}\) = 0.172; p = 0.111). Conclusions Since ulnar-sided contrast leakage is more common in patients with peripheral TFCC injuries, distinction between an atypical configuration of the prestyloid recess and actual leakage is important in CT arthrography of the wrist.}, language = {en} } @article{AugustinWolfschmidtElsaesseretal.2022, author = {Augustin, Anne Marie and Wolfschmidt, Franziska and Els{\"a}sser, Thilo and Sauer, Alexander and Dierks, Alexander and Bley, Thorsten Alexander and Kickuth, Ralph}, title = {Color-coded summation images for the evaluation of blood flow in endovascular aortic dissection fenestration}, series = {BMC Medical Imaging}, volume = {22}, journal = {BMC Medical Imaging}, number = {1}, doi = {10.1186/s12880-022-00744-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-301107}, year = {2022}, abstract = {Background To analyze the benefit of color-coded summation images in the assessment of target lumen perfusion in patients with aortic dissection and malperfusion syndrome before and after fluoroscopy-guided aortic fenestration. Methods Between December 2011 and April 2020 25 patients with Stanford type A (n = 13) or type B dissection (n = 12) and malperfusion syndromes were treated with fluoroscopy-guided fenestration of the dissection flap using a re-entry catheter. The procedure was technically successful in 100\% of the cases and included additional iliofemoral stent implantation in four patients. Intraprocedural systolic blood pressure measurements for gradient evaluation were performed in 19 cases. Post-processed color-coded DSA images were obtained from all DSA series before and following fenestration. Differences in time to peak (dTTP) values in the compromised aortic lumen and transluminal systolic blood pressure gradients were analyzed retrospectively. Correlation analysis between dTTP and changes in blood pressure gradients was performed. Results Mean TTP prior to dissection flap fenestration was 6.85 ± 1.35 s. After fenestration, mean TTP decreased significantly to 4.96 ± 0.94 s (p < 0.001). Available systolic blood pressure gradients between the true and the false lumen were reduced by a median of 4.0 mmHg following fenestration (p = 0.031), with significant reductions in Stanford type B dissections (p = 0.013) and minor reductions in type A dissections (p = 0.530). A moderate correlation with no statistical significance was found between dTTP and the difference in systolic blood pressure (r = 0.226; p = 0.351). Conclusions Hemodynamic parameters obtained from color-coded DSA confirmed a significant reduction of TTP values in the aortic target lumen in terms of an improved perfusion in the compromised aortic region. Color-coded DSA might thus be a suitable complementary tool in the assessment of complex vascular patterns prevailing in aortic dissections, especially when blood pressure measurements are not conclusive or feasible.}, language = {en} } @article{HuflageKunzHendeletal.2023, author = {Huflage, Henner and Kunz, Andreas Steven and Hendel, Robin and Kraft, Johannes and Weick, Stefan and Razinskas, Gary and Sauer, Stephanie Tina and Pennig, Lenhard and Bley, Thorsten Alexander and Grunz, Jan-Peter}, title = {Obesity-related pitfalls of virtual versus true non-contrast imaging — an intraindividual comparison in 253 oncologic patients}, series = {Diagnostics}, volume = {13}, journal = {Diagnostics}, number = {9}, issn = {2075-4418}, doi = {10.3390/diagnostics13091558}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-313519}, year = {2023}, abstract = {Objectives: Dual-source dual-energy CT (DECT) facilitates reconstruction of virtual non-contrast images from contrast-enhanced scans within a limited field of view. This study evaluates the replacement of true non-contrast acquisition with virtual non-contrast reconstructions and investigates the limitations of dual-source DECT in obese patients. Materials and Methods: A total of 253 oncologic patients (153 women; age 64.5 ± 16.2 years; BMI 26.6 ± 5.1 kg/m\(^2\)) received both multi-phase single-energy CT (SECT) and DECT in sequential staging examinations with a third-generation dual-source scanner. Patients were allocated to one of three BMI clusters: non-obese: <25 kg/m\(^2\) (n = 110), pre-obese: 25-29.9 kg/m\(^2\) (n = 73), and obese: >30 kg/m\(^2\) (n = 70). Radiation dose and image quality were compared for each scan. DECT examinations were evaluated regarding liver coverage within the dual-energy field of view. Results: While arterial contrast phases in DECT were associated with a higher CTDI\(_{vol}\) than in SECT (11.1 vs. 8.1 mGy; p < 0.001), replacement of true with virtual non-contrast imaging resulted in a considerably lower overall dose-length product (312.6 vs. 475.3 mGy·cm; p < 0.001). The proportion of DLP variance predictable from patient BMI was substantial in DECT (R\(^2\) = 0.738) and SECT (R\(^2\) = 0.620); however, DLP of SECT showed a stronger increase in obese patients (p < 0.001). Incomplete coverage of the liver within the dual-energy field of view was most common in the obese subgroup (17.1\%) compared with non-obese (0\%) and pre-obese patients (4.1\%). Conclusion: DECT facilitates a 30.8\% dose reduction over SECT in abdominal oncologic staging examinations. Employing dual-source scanner architecture, the risk for incomplete liver coverage increases in obese patients.}, language = {en} } @article{HuflageGrunzPatzeretal.2023, author = {Huflage, Henner and Grunz, Jan-Peter and Patzer, Theresa Sophie and Pannenbecker, Pauline and Feldle, Philipp and Sauer, Stephanie Tina and Petritsch, Bernhard and Erg{\"u}n, S{\"u}leyman and Bley, Thorsten Alexander and Kunz, Andreas Steven}, title = {Potential of unenhanced ultra-low-dose abdominal photon-counting CT with tin filtration: a cadaveric study}, series = {Diagnostics}, volume = {13}, journal = {Diagnostics}, number = {4}, issn = {2075-4418}, doi = {10.3390/diagnostics13040603}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-304122}, year = {2023}, abstract = {Objectives: This study investigated the feasibility and image quality of ultra-low-dose unenhanced abdominal CT using photon-counting detector technology and tin prefiltration. Materials and Methods: Employing a first-generation photon-counting CT scanner, eight cadaveric specimens were examined both with tin prefiltration (Sn 100 kVp) and polychromatic (120 kVp) scan protocols matched for radiation dose at three different levels: standard-dose (3 mGy), low-dose (1 mGy) and ultra-low-dose (0.5 mGy). Image quality was evaluated quantitatively by means of contrast-to-noise-ratios (CNR) with regions of interest placed in the renal cortex and subcutaneous fat. Additionally, three independent radiologists performed subjective evaluation of image quality. The intraclass correlation coefficient was calculated as a measure of interrater reliability. Results: Irrespective of scan mode, CNR in the renal cortex decreased with lower radiation dose. Despite similar mean energy of the applied x-ray spectrum, CNR was superior for Sn 100 kVp over 120 kVp at standard-dose (17.75 ± 3.51 vs. 14.13 ± 4.02), low-dose (13.99 ± 2.6 vs. 10.68 ± 2.17) and ultra-low-dose levels (8.88 ± 2.01 vs. 11.06 ± 1.74) (all p ≤ 0.05). Subjective image quality was highest for both standard-dose protocols (score 5; interquartile range 5-5). While no difference was ascertained between Sn 100 kVp and 120 kVp examinations at standard and low-dose levels, the subjective image quality of tin-filtered scans was superior to 120 kVp with ultra-low radiation dose (p < 0.05). An intraclass correlation coefficient of 0.844 (95\% confidence interval 0.763-0.906; p < 0.001) indicated good interrater reliability. Conclusions: Photon-counting detector CT permits excellent image quality in unenhanced abdominal CT with very low radiation dose. Employment of tin prefiltration at 100 kVp instead of polychromatic imaging at 120 kVp increases the image quality even further in the ultra-low-dose range of 0.5 mGy.}, language = {en} } @article{PatzerKunzHuflageetal.2023, author = {Patzer, Theresa Sophie and Kunz, Andreas Steven and Huflage, Henner and Conrads, Nora and Luetkens, Karsten Sebastian and Pannenbecker, Pauline and Paul, Mila Marie and Erg{\"u}n, S{\"u}leyman and Bley, Thorsten Alexander and Grunz, Jan-Peter}, title = {Ultrahigh-resolution photon-counting CT in cadaveric fracture models: spatial frequency is not everything}, series = {Diagnostics}, volume = {13}, journal = {Diagnostics}, number = {10}, issn = {2075-4418}, doi = {10.3390/diagnostics13101677}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-319281}, year = {2023}, abstract = {In this study, the impact of reconstruction sharpness on the visualization of the appendicular skeleton in ultrahigh-resolution (UHR) photon-counting detector (PCD) CT was investigated. Sixteen cadaveric extremities (eight fractured) were examined with a standardized 120 kVp scan protocol (CTDI\(_{vol}\) 10 mGy). Images were reconstructed with the sharpest non-UHR kernel (Br76) and all available UHR kernels (Br80 to Br96). Seven radiologists evaluated image quality and fracture assessability. Interrater agreement was assessed with the intraclass correlation coefficient. For quantitative comparisons, signal-to-noise-ratios (SNRs) were calculated. Subjective image quality was best for Br84 (median 1, interquartile range 1-3; p ≤ 0.003). Regarding fracture assessability, no significant difference was ascertained between Br76, Br80 and Br84 (p > 0.999), with inferior ratings for all sharper kernels (p < 0.001). Interrater agreement for image quality (0.795, 0.732-0.848; p < 0.001) and fracture assessability (0.880; 0.842-0.911; p < 0.001) was good. SNR was highest for Br76 (3.4, 3.0-3.9) with no significant difference to Br80 and Br84 (p > 0.999). Br76 and Br80 produced higher SNRs than all kernels sharper than Br84 (p ≤ 0.026). In conclusion, PCD-CT reconstructions with a moderate UHR kernel offer superior image quality for visualizing the appendicular skeleton. Fracture assessability benefits from sharp non-UHR and moderate UHR kernels, while ultra-sharp reconstructions incur augmented image noise.}, language = {en} }