@book{BockGauchGiernatetal.2013, author = {Bock, Stefanie and Gauch, Fabian and Giernat, Yannik and Hillebrand, Frank and Kozlova, Darja and Linck, Lisa and Moschall, Rebecca and Sauer, Markus and Schenk, Christian and Ulrich, Kristina and Bodem, Jochen}, title = {HIV-1 : Lehrbuch von Studenten f{\"u}r Studenten}, organization = {Bachelor- und Masterkurs Virologie 2013}, isbn = {978-3-923959-90-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-78980}, publisher = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Dies ist ein Lehrbuch {\"u}ber die HIV-1 Replikation, Pathogenese und Therapie. Es richtet sich an Studenten der Biologie und der Medizin, die etwas mehr {\"u}ber HIV erfahren wollen und stellt neben virologischen Themen auch die zellul{\"a}ren Grundlagen dar. Es umfasst den Viruseintritt, die reverse Transkription, Genom-Integration, Transkriptionsregualtion, die Kotrolle des Spleißens, der Polyadenylierung und des RNA-Exportes. Die Darstellung wird abgerundet mit Kapiteln zum intrazellul{\"a}rem Transport, zu Nef und zum Virusassembly. In zwei weiteren Kapitel wird die HIV-1 Pathogenese und die Therapie besprochen. Zur Lernkontrolle sind den Kapiteln Fragen und auch Klausurfragen angef{\"u}gt.}, subject = {HIV}, language = {de} } @article{JacobsBockSchuchetal.2012, author = {Jacobs, Graeme and Bock, Stefanie and Schuch, Anita and Moschall, Rebecca and Schrom, Eva-Maria and Zahn, Juliane and Reuter, Christian and Preiser, Wolfgang and Rethwilm, Axel and Engelbrecht, Susan and Krekau, Thomas and Bodem, Jochen}, title = {Construction of a high titer Infectious HIV-1 subtype C proviral clone from South Africa}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-76340}, year = {2012}, abstract = {The Human Immunodeficiency Virus type 1 (HIV-1) subtype C is currently the predominant subtype worldwide. Cell culture studies of Sub-Saharan African subtype C proviral plasmids are hampered by the low replication capacity of the resulting viruses, although viral loads in subtype C infected patients are as high as those from patients with subtype B. Here, we describe the sequencing and construction of a new HIV-1 subtype C proviral clone (pZAC), replicating more than one order of magnitude better than the previous subtype C plasmids. We identify the env-region for being the determinant for the higher viral titers and the pZAC Env to be M-tropic. This higher replication capacity does not lead to a higher cytotoxicity compared to previously described subtype C viruses. In addition, the pZAC Vpu is also shown to be able to down-regulate CD4, but fails to fully counteract CD317.}, subject = {HIV}, language = {en} } @article{RolfesRuckDavidetal.2022, author = {Rolfes, Leoni and Ruck, Tobias and David, Christina and Mencl, Stine and Bock, Stefanie and Schmidt, Mariella and Strecker, Jan-Kolja and Pfeuffer, Steffen and Mecklenbeck, Andreas-Schulte and Gross, Catharina and Gliem, Michael and Minnerup, Jens and Schuhmann, Michael K. and Kleinschnitz, Christoph and Meuth, Sven G.}, title = {Natural Killer Cells Are Present in Rag1\(^{-/-}\) Mice and Promote Tissue Damage During the Acute Phase of Ischemic Stroke}, series = {Translational Stroke Research}, volume = {13}, journal = {Translational Stroke Research}, number = {1}, issn = {1868-4483}, doi = {10.1007/s12975-021-00923-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-308924}, pages = {197-211}, year = {2022}, abstract = {Rag1\(^{-/-}\) mice, lacking functional B and T cells, have been extensively used as an adoptive transfer model to evaluate neuroinflammation in stroke research. However, it remains unknown whether natural killer (NK) cell development and functions are altered in Rag1\(^{-/-}\) mice as well. This connection has been rarely discussed in previous studies but might have important implications for data interpretation. In contrast, the NOD-Rag1\(^{null}\)IL2rg\(^{null}\) (NRG) mouse model is devoid of NK cells and might therefore eliminate this potential shortcoming. Here, we compare immune-cell frequencies as well as phenotype and effector functions of NK cells in Rag1\(^{-/-}\) and wildtype (WT) mice using flow cytometry and functional in vitro assays. Further, we investigate the effect of Rag1\(^{-/-}\) NK cells in the transient middle cerebral artery occlusion (tMCAO) model using antibody-mediated depletion of NK cells and adoptive transfer to NRG mice in vivo. NK cells in Rag1\(^{-/-}\) were comparable in number and function to those in WT mice. Rag1\(^{-/-}\) mice treated with an anti-NK1.1 antibody developed significantly smaller infarctions and improved behavioral scores. Correspondingly, NRG mice supplemented with NK cells were more susceptible to tMCAO, developing infarctions and neurological deficits similar to Rag1-/- controls. Our results indicate that NK cells from Rag1-/- mice are fully functional and should therefore be considered in the interpretation of immune-cell transfer models in experimental stroke. Fortunately, we identified the NRG mice, as a potentially better-suited transfer model to characterize individual cell subset-mediated neuroinflammation in stroke.}, language = {en} }