@article{HsuKuegelKemmeretal.2016, author = {Hsu, Pin-Jui and K{\"u}gel, Jens and Kemmer, Jeannette and Toldin, Francesco Parisen and Mauerer, Tobias and Vogt, Matthias and Assaad, Fakher and Bode, Matthias}, title = {Coexistence of charge and ferromagnetic order in fcc Fe}, series = {Nature Communications}, volume = {7}, journal = {Nature Communications}, doi = {10.1038/ncomms10949}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-173969}, year = {2016}, abstract = {Phase coexistence phenomena have been intensively studied in strongly correlated materials where several ordered states simultaneously occur or compete. Material properties critically depend on external parameters and boundary conditions, where tiny changes result in qualitatively different ground states. However, up to date, phase coexistence phenomena have exclusively been reported for complex compounds composed of multiple elements. Here we show that charge- and magnetically ordered states coexist in double-layer Fe/Rh(001). Scanning tunnelling microscopy and spectroscopy measurements reveal periodic charge-order stripes below a temperature of 130 K. Close to liquid helium temperature, they are superimposed by ferromagnetic domains as observed by spin-polarized scanning tunnelling microscopy. Temperature-dependent measurements reveal a pronounced cross-talk between charge and spin order at the ferromagnetic ordering temperature about 70 K, which is successfully modelled within an effective Ginzburg-Landau ansatz including sixth-order terms. Our results show that subtle balance between structural modifications can lead to competing ordering phenomena.}, language = {en} } @article{SessiBiswasBathonetal.2016, author = {Sessi, Paolo and Biswas, Rudro R. and Bathon, Thomas and Storz, Oliver and Wilfert, Stefan and Barla, Alessandro and Kokh, Konstantin A. and Tereshchenko, Oleg E. and Fauth, Kai and Bode, Matthias and Balatsky, Alexander V.}, title = {Dual nature of magnetic dopants and competing trends in topological insulators}, series = {Nature Communications}, volume = {7}, journal = {Nature Communications}, doi = {10.1038/ncomms12027}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-172704}, year = {2016}, abstract = {Topological insulators interacting with magnetic impurities have been reported to host several unconventional effects. These phenomena are described within the framework of gapping Dirac quasiparticles due to broken time-reversal symmetry. However, the overwhelming majority of studies demonstrate the presence of a finite density of states near the Dirac point even once topological insulators become magnetic. Here, we map the response of topological states to magnetic impurities at the atomic scale. We demonstrate that magnetic order and gapless states can coexist. We show how this is the result of the delicate balance between two opposite trends, that is, gap opening and emergence of a Dirac node impurity band, both induced by the magnetic dopants. Our results evidence a more intricate and rich scenario with respect to the once generally assumed, showing how different electronic and magnetic states may be generated and controlled in this fascinating class of materials.}, language = {en} } @article{SessiSilkinNechaevetal.2015, author = {Sessi, Paolo and Silkin, Vyacheslav M. and Nechaev, Ilya A. and Bathon, Thomas and El-Kareh, Lydia and Chulkov, Evgueni V. and Echenique, Pedro M. and Bode, Matthias}, title = {Direct observation of many-body charge density oscillations in a two-dimensional electron gas}, series = {Nature Communications}, volume = {6}, journal = {Nature Communications}, number = {8691}, doi = {10.1038/ncomms9691}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-145246}, year = {2015}, abstract = {Quantum interference is a striking manifestation of one of the basic concepts of quantum mechanics: the particle-wave duality. A spectacular visualization of this effect is the standing wave pattern produced by elastic scattering of surface electrons around defects, which corresponds to a modulation of the electronic local density of states and can be imaged using a scanning tunnelling microscope. To date, quantum-interference measurements were mainly interpreted in terms of interfering electrons or holes of the underlying band-structure description. Here, by imaging energy-dependent standing-wave patterns at noble metal surfaces, we reveal, in addition to the conventional surface-state band, the existence of an 'anomalous' energy band with a well-defined dispersion. Its origin is explained by the presence of a satellite in the structure of the many-body spectral function, which is related to the acoustic surface plasmon. Visualizing the corresponding charge oscillations provides thus direct access to many-body interactions at the atomic scale.}, language = {en} } @article{FiedlerElKarehEremeevetal.2014, author = {Fiedler, Sebastian and El-Kareh, Lydia and Eremeev, Sergey V. and Tereshchenko, Oleg E. and Seibel, Christoph and Lutz, Peter and Kokh, Konstantin A. and Chulkov, Evgueni V. and Kuznetsova, Tatyana V. and Grebennikov, Vladimir I. and Bentmann, Hendrik and Bode, Matthias and Reinert, Friedrich}, title = {Defect and structural imperfection effects on the electronic properties of BiTeI surfaces}, series = {New Journal of Physics}, volume = {16}, journal = {New Journal of Physics}, number = {075013}, issn = {1367-2630}, doi = {10.1088/1367-2630/16/7/075013}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-119467}, year = {2014}, abstract = {The surface electronic structure of the narrow-gap seminconductor BiTeI exhibits a large Rashba-splitting which strongly depends on the surface termination. Here we report on a detailed investigation of the surface morphology and electronic properties of cleaved BiTeI single crystals by scanning tunneling microscopy, photoelectron spectroscopy (ARPES, XPS), electron diffraction (SPA-LEED) and density functional theory calculations. Our measurements confirm a previously reported coexistence of Te- and I-terminated surface areas originating from bulk stacking faults and find a characteristic length scale of ~100 nm for these areas. We show that the two terminations exhibit distinct types of atomic defects in the surface and subsurface layers. For electronic states resided on the I terminations we observe an energy shift depending on the time after cleavage. This aging effect is successfully mimicked by depositon of Cs adatoms found to accumulate on top of the I terminations. As shown theoretically on a microscopic scale, this preferential adsorbing behaviour results from considerably different energetics and surface diffusion lengths at the two terminations. Our investigations provide insight into the importance of structural imperfections as well as intrinsic and extrinsic defects on the electronic properties of BiTeI surfaces and their temporal stability.}, language = {en} } @article{ElKarehBihlmayerBuchteretal.2014, author = {El-Kareh, Lydia and Bihlmayer, Gustav and Buchter, Arne and Bentmann, Hendrik and Bl{\"u}gel, Stefan and Reinert, Friedrich and Bode, Matthias}, title = {A combined experimental and theoretical study of Rashba-split surface states on the ( √3x√3) Pb/Ag (111)R30° surface}, doi = {doi:10.1088/1367-2630/16/4/045017}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-112786}, year = {2014}, abstract = {We report on a combined low-temperature scanning tunneling spectroscopy (STS), angle-resolved photoemission spectroscopy (ARPES), and density functional theory (DFT) investigation of the ( √3x√3) Pb/Ag (111)R30° surface alloy which provides a giant Rashba-type spin splitting. With STS we observed spectroscopic features that are assigned to two hole-like Rashba-split bands in the unoccupied energy range. By means of STS and quantum interference mapping we determine the band onsets, splitting strengths, and dispersions for both bands. The unambiguous assignment of scattering vectors is achieved by comparison to ARPES measurements. While intra-band scattering is found for both Rashba bands, inter-band scattering is only observed in the occupied energy range. Spin- and orbitally-resolved band structures were obtained by DFT calculations. Considering the scattering between states of different spin- and orbital character, the apparent deviation between experimentally observed scattering events and the theoretically predicted spin polarization could be resolved.}, language = {en} } @article{ChristHaertlKlosteretal.2022, author = {Christ, Andreas and H{\"a}rtl, Patrick and Kloster, Patrick and Bode, Matthias and Leisegang, Markus}, title = {Influence of band structure on ballistic transport revealed by molecular nanoprobe}, series = {Physical Review Research}, volume = {4}, journal = {Physical Review Research}, number = {4}, doi = {10.1103/PhysRevResearch.4.043016}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300855}, year = {2022}, abstract = {In this study we characterize the tautomerization of HPc on Cu(111) as a charge-carrier-induced reversible one-electron process. An analysis of the bias-dependent tautomerization rate finds an energy threshold that corresponds to the energy of the N-H stretching mode. By using the tautomerization of the molecule as a detector for charge carrier transport in the so-called molecular nanoprobe (MONA) technique, we provide evidence for an inhomogeneous coupling between the fourfold-symmetric molecule and sixfold-symmetric surface. We conclude the study by comparing the energy dependence of charge carrier transport on the Cu(111) to the Ag(111) surface. While the MONA technique is limited to the detection of hot-electron transport for Ag(111), our data reveal that the lower onset energy of the Cu surface state also allows for the detection of hot-hole transport. The influence of surface and bulk transport on the MONA technique is discussed.}, language = {en} }