@article{HessKrummenacherDellermannetal.2021, author = {Heß, Merlin and Krummenacher, Ivo and Dellermann, Theresa and Braunschweig, Holger}, title = {Rhodium-Mediated Stoichiometric Synthesis of Mono-, Bi-, and Bis-1,2-Azaborinines: 1-Rhoda-3,2-azaboroles as Reactive Precursors}, series = {Chemistry—A European Journal}, volume = {27}, journal = {Chemistry—A European Journal}, number = {37}, doi = {10.1002/chem.202100795}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256830}, pages = {9503-9507}, year = {2021}, abstract = {A series of highly substituted 1,2-azaborinines, including a phenylene-bridged bis-1,2-azaborinine, was synthesized from the reaction of 1,2-azaborete rhodium complexes with variously substituted alkynes. 1-Rhoda-3,2-azaborole complexes, which are accessible by phosphine addition to the corresponding 1,2-azaborete complexes, were also found to be suitable precursors for the synthesis of 1,2-azaborinines and readily reacted with alkynyl-substituted 1,2-azaborinines to generate new regioisomers of bi-1,2-azaborinines, which feature directly connected aromatic rings. Their molecular structures, which can be viewed as boron-nitrogen isosteres of biphenyls, show nearly perpendicular 1,2-azaborinine rings. The new method using rhodacycles instead of 1,2-azaborete complexes as precursors is shown to be more effective, allowing the synthesis of a wider range of 1,2-azaborinines.}, language = {en} } @article{GaertnerMarekArrowsmithetal.2021, author = {G{\"a}rtner, Annalena and Marek, Matth{\"a}us and Arrowsmith, Merle and Auerhammer, Dominic and Radacki, Krzysztof and Prieschl, Dominic and Dewhurst, Rian D. and Braunschweig, Holger}, title = {Boron- versus Nitrogen-Centered Nucleophilic Reactivity of (Cyano)hydroboryl Anions: Synthesis of Cyano(hydro)organoboranes and 2-Aza-1,4-diborabutatrienes}, series = {Chemistry—A European Journal}, volume = {27}, journal = {Chemistry—A European Journal}, number = {37}, doi = {10.1002/chem.202101025}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256853}, pages = {9694-9699}, year = {2021}, abstract = {Cyclic alkyl(amino)carbene-stabilized (cyano)hydroboryl anions were synthesized by deprotonation of (cyano)dihydroborane precursors. While they display boron-centered nucleophilic reactivity towards organohalides, generating fully unsymmetrically substituted cyano(hydro)organoboranes, they show cyano-nitrogen-centered nucleophilic reactivity towards haloboranes, resulting in the formation of hitherto unknown linear 2-aza-1,4-diborabutatrienes.}, language = {en} } @article{HuangWangDewhurstetal.2020, author = {Huang, Zhenguo and Wang, Suning and Dewhurst, Rian D. and Ignat'ev, Nikolai V. and Finze, Maik and Braunschweig, Holger}, title = {Boron: Its Role in Energy-Related Processes and Applications}, series = {Angewandte Chemie International Edition}, volume = {59}, journal = {Angewandte Chemie International Edition}, number = {23}, doi = {10.1002/anie.201911108}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-218514}, pages = {8800 -- 8816}, year = {2020}, abstract = {Boron's unique position in the Periodic Table, that is, at the apex of the line separating metals and nonmetals, makes it highly versatile in chemical reactions and applications. Contemporary demand for renewable and clean energy as well as energy-efficient products has seen boron playing key roles in energy-related research, such as 1) activating and synthesizing energy-rich small molecules, 2) storing chemical and electrical energy, and 3) converting electrical energy into light. These applications are fundamentally associated with boron's unique characteristics, such as its electron-deficiency and the availability of an unoccupied p orbital, which allow the formation of a myriad of compounds with a wide range of chemical and physical properties. For example, boron's ability to achieve a full octet of electrons with four covalent bonds and a negative charge has led to the synthesis of a wide variety of borate anions of high chemical and electrochemical stability—in particular, weakly coordinating anions. This Review summarizes recent advances in the study of boron compounds for energy-related processes and applications.}, language = {en} } @article{LuJayaramanFantuzzietal.2022, author = {Lu, Wei and Jayaraman, Arumugam and Fantuzzi, Felipe and Dewhurst, Rian D. and H{\"a}rterich, Marcel and Dietz, Maximilian and Hagspiel, Stephan and Krummenbacher, Ivo and Hammond, Kai and Cui, Jingjing and Braunschweig, Holger}, title = {An unsymmetrical, cyclic diborene based on a chelating CAAC ligand and its small-molecule activation and rearrangement chemistry}, series = {Angewandte Chemie International Edition}, volume = {61}, journal = {Angewandte Chemie International Edition}, number = {3}, doi = {10.1002/anie.202113947}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256576}, year = {2022}, abstract = {A one-pot synthesis of a CAAC-stabilized, unsymmetrical, cyclic diborene was achieved via consecutive two-electron reduction steps from an adduct of CAAC and B\(_2\)Br\(_4\)(SMe\(_2\))\(_2\). Theoretical studies revealed that this diborene has a considerably smaller HOMO-LUMO gap than those of reported NHC- and phosphine-supported diborenes. Complexation of the diborene with [AuCl(PCy\(_3\))] afforded two diborene-Au\(^I\) π complexes, while reaction with DurBH\(_2\), P\(_4\) and a terminal acetylene led to the cleavage of B-H, P-P, and C-C π bonds, respectively. Thermal rearrangement of the diborene gave an electron-rich cyclic alkylideneborane, which readily coordinated to Ag\(^I\) via its B=C double bond.}, language = {en} } @article{HaerterichMatlerDewhurstetal.2023, author = {H{\"a}rterich, Marcel and Matler, Alexander and Dewhurst, Rian D. and Sachs, Andreas and Oppel, Kai and Stoy, Andreas and Braunschweig, Holger}, title = {A step-for-step main-group replica of the Fischer carbene synthesis at a borylene carbonyl}, series = {Nature Communications}, volume = {14}, journal = {Nature Communications}, doi = {10.1038/s41467-023-36251-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-357270}, year = {2023}, abstract = {The Fischer carbene synthesis, involving the conversion of a transition metal (TM)-bound CO ligand to a carbene ligand of the form [=C(OR')R] (R, R' = organyl groups), is one of the seminal reactions in the history of organometallic chemistry. Carbonyl complexes of p-block elements, of the form [E(CO)n] (E = main-group fragment), are much less abundant than their TM cousins; this scarcity and the general instability of low-valent p-block species means that replicating the historical reactions of TM carbonyls is often very difficult. Here we present a step-for-step replica of the Fischer carbene synthesis at a borylene carbonyl involving nucleophilic attack at the carbonyl carbon followed by electrophilic quenching at the resultant acylate oxygen atom. These reactions provide borylene acylates and alkoxy-/silyloxy-substituted alkylideneboranes, main-group analogues of the archetypal transition metal acylate and Fischer carbene families, respectively. When either the incoming electrophile or the boron center has a modest steric profile, the electrophile instead attacks at the boron atom, leading to carbene-stabilized acylboranes - boron analogues of the well-known transition metal acyl complexes. These results constitute faithful main-group replicas of a number of historical organometallic processes and pave the way to further advances in the field of main-group metallomimetics.}, language = {en} }