@unpublished{AuerhammerArrowsmithBissingeretal.2017, author = {Auerhammer, Dominic and Arrowsmith, Merle and Bissinger, Philipp and Braunschweig, Holger and Dellermann, Theresa and Kupfer, Thomas and Lenczyk, Carsten and Roy, Dipak and Sch{\"a}fer, Marius and Schneider, Christoph}, title = {Increasing the Reactivity of Diborenes: Derivatization of NHC- Supported Dithienyldiborenes with Electron-Donor Groups}, series = {Chemistry, A European Journal}, journal = {Chemistry, A European Journal}, doi = {10.1002/chem.201704669}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-155419}, year = {2017}, abstract = {A series of NHC-supported 1,2-dithienyldiborenes was synthesized from the corresponding (dihalo)thienylborane NHC precursors. NMR and UV-vis spectroscopic data, as well as X-ray crystallographic analyses, were used to assess the electronic and steric influences on the B=B double bond of various NHCs and electron-donating substituents on the thienyl ligands. Crystallographic data showed that the degree of coplanarity of the diborene core and thienyl groups is highly dependent on the sterics of the substituents. Furthermore, any increase in the electron- donating ability of the substituents resulted in the destabilization of the HOMO and greater instability of the resulting diborenes.}, language = {en} } @unpublished{ArrowsmithMattockBoehnkeetal.2018, author = {Arrowsmith, Merle and Mattock, James D. and B{\"o}hnke, Julian and Krummenacher, Ivo and Vargas, Alfredo and Braunschweig, Holger}, title = {Direct access to a cAAC-supported dihydrodiborene and its dianion}, series = {Chemical Communications}, journal = {Chemical Communications}, doi = {10.1039/C8CC01580E}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-164276}, year = {2018}, abstract = {The two-fold reduction of (cAAC)BHX\(_2\) (cAAC = 1-(2,6-diisopropylphenyl)-3,3,5,5-tetramethylpyrrolidin-2-ylidene; X = Cl, Br) provides a facile, high-yielding route to the dihydrodiborene (cAAC)\(_2\)B\(_2\)H\(_2\). The (chloro)hydroboryl anion reduction intermediate was successfully isolated using a crown ether. Overreduction of the diborene to its dianion [(cAAC)\(_2\)B\(_2\)H\(_2\)]\(^{2-}\) causes a decrease in the B-B bond order whereas the B-C bond orders increase.}, language = {en} } @article{ArrowsmithEndresHeinzetal.2021, author = {Arrowsmith, Merle and Endres, Sara and Heinz, Myron and Nestler, Vincent and Holthausen, Max C. and Braunschweig, Holger}, title = {Probing the Boundaries between Lewis-Basic and Redox Behavior of a Parent Borylene}, series = {Chemistry—A European Journal}, volume = {27}, journal = {Chemistry—A European Journal}, number = {70}, doi = {10.1002/chem.202103256}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-257154}, pages = {17660-17668}, year = {2021}, abstract = {The parent borylene (CAAC)(Me\(_{3}\)P)BH, 1 (CAAC=cyclic alkyl(amino)carbene), acts both as a Lewis base and one-electron reducing agent towards group 13 trichlorides (ECl\(_{3}\), E=B, Al, Ga, In), yielding the adducts 1-ECl\(_{3}\) and increasing proportions of the radical cation [1]\(^{•+}\) for the heavier group 13 analogues. With boron trihalides (BX\(_{3}\), X=F, Cl, Br, I) 1 undergoes sequential adduct formation and halide abstraction reactions to yield borylboronium cations and shows an increasing tendency towards redox processes for the heavier halides. Calculations confirm that 1 acts as a strong Lewis base towards EX3 and show a marked increase in the B-E bond dissociation energies down both group 13 and the halide group.}, language = {en} } @unpublished{ArrowsmithDoemlingSchmidtetal.2019, author = {Arrowsmith, Merle and D{\"o}mling, Michael and Schmidt, Uwe and Werner, Luis and Castro, Abril C. and Jim{\´e}nez-Halla, J. Oscar C. and M{\"u}ssig, Jonas and Prieschl, Dominic and Braunschweig, Holger}, title = {Spontaneous trans-Selective Transfer Hydrogenation of Apolar B=B Double Bonds}, series = {Angewandte Chemie, International Edition}, journal = {Angewandte Chemie, International Edition}, doi = {10.1002/anie.201902656}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-184874}, year = {2019}, abstract = {The transfer hydrogenation of NHC-supported diborenes with dimethylamine borane proceeds with high selectivity for the trans-1,2-dihydrodiboranes(6). DFT calculations suggest a stepwise proton-first-hydride-second reaction mechanism via an intermediate μ-hydrodiboronium dimethylaminoborate ion pair.}, language = {en} } @unpublished{ArrowsmithBoehnkeBraunschweigetal.2017, author = {Arrowsmith, Merle and B{\"o}hnke, Julian and Braunschweig, Holger and Deißenberger, Andrea and Dewhurst, Rian and Ewing, William and H{\"o}rl, Christian and Mies, Jan and Muessig, Jonas}, title = {Simple Solution-Phase Syntheses of Tetrahalodiboranes(4) and their Labile Dimethylsulfide Adducts}, series = {Chemical Communications}, volume = {53}, journal = {Chemical Communications}, doi = {10.1039/C7CC03148C}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-149438}, pages = {8265-8267}, year = {2017}, abstract = {Convenient, solution-phase syntheses of tetrahalodiboranes(4) B\(_2\)F\(_4\), B\(_2\)Cl\(_4\) and B\(_2\)I\(_4\) are presented herein from common precursor B\(_2\)Br\(_4\). In addition, the dimethylsulfide adducts B\(_2\)Cl\(_4\)(SMe\(_2\))\(_2\) and B\(_2\)Br\(_4\)(SMe\(_2\))\(_2\) are conveniently prepared in one-step syntheses from the commercially-available starting material B\(_2\)(NMe\(_2\))\(_4\). The results provide simple access to the full range of tetrahalodiboranes(4) for the exploration of their untapped synthetic potential.}, language = {en} } @article{ArrowsmithBoehnkeBraunschweigetal.2016, author = {Arrowsmith, Merle and B{\"o}hnke, Julian and Braunschweig, Holger and Celik, Mehmet and Dellermann, Theresa and Hammond, Kai}, title = {Uncatalyzed Hydrogenation of First-Row Main Group Multiple Bonds}, series = {Chemistry, A European Journal}, volume = {22}, journal = {Chemistry, A European Journal}, number = {48}, doi = {10.1002/chem.201604094}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-139364}, pages = {17169 -- 17172}, year = {2016}, abstract = {Room temperature hydrogenation of an SIDep-stabilized diboryne (SIDep = 1,3-bis(diethylphenyl)-4,5-dihydroimidazol-2-ylidene) and a CAAC-supported diboracumulene (CAAC = 1-(2,6- diisopropylphenyl)-3,3,5,5-tetramethylpyrrolidin-2-ylidene) provided the first selective route to the corresponding 1,2-dihydrodiborenes. DFT calculations showed an overall exothermic (ΔG = 19.4 kcal mol\(^{-1}\) two-step asynchronous H\(_2\) addition mechanism proceeding via a bridging hydride.}, subject = {Diborane}, language = {en} } @unpublished{ArrowsmithBoehnkeBraunschweigetal.2016, author = {Arrowsmith, Merle and B{\"o}hnke, Julian and Braunschweig, Holger and Celik, Mehmet and Claes, Christina and Ewing, William and Krummenacher, Ivo and Lubitz, Katharina and Schneider, Christoph}, title = {Neutral Diboron Analogues of Archetypal Aromatic Species by Spontaneous Cycloaddition}, doi = {10.1002/anie.201602384}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-142500}, pages = {4}, year = {2016}, abstract = {Among the numerous routes organic chemists have developed to synthesize benzene derivatives and heteroaro- matic compounds, transition-metal-catalyzed cycloaddition reactions are the most elegant. In contrast, cycloaddition reactions of heavier alkene and alkyne analogues, though limited in scope, proceed uncatalyzed. In this work we present the first spontaneous cycloaddition reactions of lighter alkene and alkyne analogues. Selective addition of unactivated alkynes to boron-boron multiple bonds under ambient con- ditions yielded diborocarbon equivalents of simple aromatic hydrocarbons, including the first neutral 6p-aromatic dibora- benzene compound, a 2 p-aromatic triplet biradical 1,3-dibor- ete, and a phosphine-stabilized 2 p-homoaromatic 1,3-dihydro- 1,3-diborete. DFT calculations suggest that all three com- pounds are aromatic and show frontier molecular orbitals matching those of the related aromatic hydrocarbons, C6H6 and C4H42+, and homoaromatic C4H5+.}, subject = {Diborane}, language = {en} } @article{ArrowsmithBoehnkeBraunschweigetal.2016, author = {Arrowsmith, Merle and B{\"o}hnke, Julian and Braunschweig, Holger and Celik, Mehmet and Claes, Christina and Ewing, William and Krummenacher, Ivo and Lubitz, Katharina and Schneider, Christoph}, title = {Neutral Diboron Analogues of Archetypal Aromatic Species by Spontaneous Cycloaddition}, series = {Angewandte Chemie, International Edition}, volume = {55}, journal = {Angewandte Chemie, International Edition}, doi = {10.1002/anie.201602384}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-138226}, pages = {11271-11275}, year = {2016}, abstract = {Among the numerous routes organic chemists have developed to synthesize benzene derivatives and heteroaro- matic compounds, transition-metal-catalyzed cycloaddition reactions are the most elegant. In contrast, cycloaddition reactions of heavier alkene and alkyne analogues, though limited in scope, proceed uncatalyzed. In this work we present the first spontaneous cycloaddition reactions of lighter alkene and alkyne analogues. Selective addition of unactivated alkynes to boron-boron multiple bonds under ambient con- ditions yielded diborocarbon equivalents of simple aromatic hydrocarbons, including the first neutral 6 π-aromatic dibora- benzene compound, a 2  π-aromatic triplet biradical 1,3-dibor- ete, and a phosphine-stabilized 2  π-homoaromatic 1,3-dihydro- 1,3-diborete. DFT calculations suggest that all three com- pounds are aromatic and show frontier molecular orbitals matching those of the related aromatic hydrocarbons, C\(_6\)H\(_6\) and C\(_4\)H\(_4\)\(^{2+}\), and homoaromatic C\(_4\)H\(_5\)\(^+\).}, language = {en} } @unpublished{ArrowsmithBoehnkeBraunschweigetal.2017, author = {Arrowsmith, Merle and B{\"o}hnke, Julian and Braunschweig, Holger and Celik, Mehmet Ali}, title = {Reactivity of a Dihydrodiborene with CO: Coordination, Insertion, Cleavage and Spontaneous Cyclic Alkyne Formation}, series = {Angewandte Chemie, International Edition}, journal = {Angewandte Chemie, International Edition}, doi = {10.1002/anie.201707907}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-153318}, year = {2017}, abstract = {Under a CO atmosphere the dihydrodiborene [(cAAC)HB=BH(cAAC)] underwent coordination of CO concomitant with reversible hydrogen migration from boron to the carbene carbon atom, as well as reversible CO insertion into the B=B bond. Heating of the CO-adduct resulted in two unusual cAAC ring-expansion products, one presenting a B=C bond to a six-membered 1,2-azaborinane-3-ylidene, the other an unprecedented nine-membered cyclic alkyne resulting from reductive cleavage of CO and spontaneous C≡C triple bond formation.}, language = {en} } @unpublished{ArrowsmithBraunschweigStennett2017, author = {Arrowsmith, Merle and Braunschweig, Holger and Stennett, Tom}, title = {Formation and Reactivity of Electron-Precise B-B Single and Multiple Bonds}, series = {Angewandte Chemie, International Edition}, volume = {56}, journal = {Angewandte Chemie, International Edition}, number = {1}, doi = {10.1002/anie.201610072}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-145631}, pages = {96-115}, year = {2017}, abstract = {Recent years have seen rapid advances in the chemistry of small molecules containing electron-precise boron-boron bonds. This review provides an overview of the latest methods for the controlled synthesis of B-B single and multiple bonds as well as the ever-expanding range of reactivity displayed by the latter.}, language = {en} } @article{ArnoldBraunschweigGruss2011, author = {Arnold, Thomas and Braunschweig, Holger and Gruss, Katrin}, title = {cyclo-Tri-mu-oxido-tris{[(eta 5,eta 5)-1,2-bis(cyclopentadienyl)-1,1,2,2-tetramethyldisilane]zirconium(IV)}: a trimeric disila-bridged oxidozirconocene}, series = {Acta Crystallographica Section E: metal-organic compounds}, volume = {67}, journal = {Acta Crystallographica Section E: metal-organic compounds}, doi = {10.1107/S1600536811007094}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-134802}, pages = {M391-sup-23}, year = {2011}, abstract = {The title compound, [Zr(3)(C(14)H(20)Si(2))(3)O(3)], consists of three disila-bridged zirconocene units, which are connected via an oxide ligand, forming a nearly planar six-membered ring with a maximum displacement of 0.0191 (8) A. The compound was isolated as a by-product from a mixture of [(C(5)H(4)SiMe(2))(2)ZrCl(2)] and Li[AlH(4)] in Et(2)O.}, language = {en} } @article{ArnoldBraunschweigDamme2012, author = {Arnold, Nicole and Braunschweig, Holger and Damme, Alexander}, title = {Bis(μ-diisopropyl-phosphanido-\(κ^2\)P:P)bis-[hydrido(triisopropyl-phosphane-κP)platinum(II)]}, series = {Acta crystallographica. Section E, Structure reports online}, volume = {E68}, journal = {Acta crystallographica. Section E, Structure reports online}, doi = {http://dx.doi.org/10.1107/S1600536812022829}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-123723}, pages = {m808}, year = {2012}, abstract = {In the centrosymmetric molecular structure of the title compound \([Pt_2(C_6H_{14}P)_2H_2)(C_9H_{21}P)_2]\), each \(Pt^{II}\) atom is bound on one side to a phosphane ligand \((PiPr_3)\) and a hydrido ligand. On the other side, it is bound to two phosphanide ligands \((μ-PiPr_2)\), which engage a bridging position between the two \(Pt^{II}\) atoms, forming a distorted square-planar structure motif. The PtPt distance is 3.6755(2){\AA}. A comparable molecular structure was observed for bis-(μ-di-tert-butyl-phosphanido)bis-[hydrido(triethyl-phosphane)platinum(II)] [Itazaki et al. (2004 ). Organometallics, 23, 1610-1621].}, language = {en} } @article{AnsellKostakisBraunschweigetal.2016, author = {Ansell, Melvyn B. and Kostakis, George E. and Braunschweig, Holger and Navarro, Oscar and Spencer, John}, title = {Synthesis of functionalized hydrazines: facile homogeneous (N-heterocyclic carbene)-palladium(0)-catalyzed diboration and silaboration of azobenzenes}, series = {Advanced Synthesis \& Catalysis}, volume = {358}, journal = {Advanced Synthesis \& Catalysis}, number = {23}, doi = {10.1002/adsc.201601106}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-186582}, pages = {3765-3769}, year = {2016}, abstract = {The bis(N-heterocyclic carbene)(diphenylacetylene)palladium complex Pd(ITMe)\(_2\)(PhCCPh)] (ITMe=1,3,4,5-tetramethylimidazol-2-ylidene) acts as a highly active pre-catalyst in the diboration and silaboration of azobenzenes to synthesize a series of novel functionalized hydrazines. The reactions proceed using commercially available diboranes and silaboranes under mild reaction conditions.}, language = {en} }