@article{GeyerChalmersMacKintoshetal.2013, author = {Geyer, Kathrin K. and Chalmers, Iain W. and MacKintosh, Neil and Hirst, Julie E. and Geoghegan, Rory and Badets, Mathieu and Brophy, Peter M. and Brehm, Klaus and Hoffmann, Karl F.}, title = {Cytosine methylation is a conserved epigenetic feature found throughout the phylum Platyhelminthes}, series = {BMC Genomics}, volume = {14}, journal = {BMC Genomics}, number = {462}, issn = {1471-2164}, doi = {10.1186/1471-2164-14-462}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-121892}, year = {2013}, abstract = {Background: The phylum Platyhelminthes (flatworms) contains an important group of bilaterian organisms responsible for many debilitating and chronic infectious diseases of human and animal populations inhabiting the planet today. In addition to their biomedical and veterinary relevance, some platyhelminths are also frequently used models for understanding tissue regeneration and stem cell biology. Therefore, the molecular (genetic and epigenetic) characteristics that underlie trophic specialism, pathogenicity or developmental maturation are likely to be pivotal in our continued studies of this important metazoan group. Indeed, in contrast to earlier studies that failed to detect evidence of cytosine or adenine methylation in parasitic flatworm taxa, our laboratory has recently defined a critical role for cytosine methylation in Schistosoma mansoni oviposition, egg maturation and ovarian development. Thus, in order to identify whether this epigenetic modification features in other platyhelminth species or is a novelty of S. mansoni, we conducted a study simultaneously surveying for DNA methylation machinery components and DNA methylation marks throughout the phylum using both parasitic and non-parasitic representatives. Results: Firstly, using both S. mansoni DNA methyltransferase 2 (SmDNMT2) and methyl-CpG binding domain protein (SmMBD) as query sequences, we illustrate that essential DNA methylation machinery components are well conserved throughout the phylum. Secondly, using both molecular (methylation specific amplification polymorphism, MSAP) and immunological (enzyme-linked immunoabsorbent assay, ELISA) methodologies, we demonstrate that representative species (Echinococcus multilocularis, Protopolystoma xenopodis, Schistosoma haematobium, Schistosoma japonicum, Fasciola hepatica and Polycelis nigra) within all four platyhelminth classes (Cestoda, Monogenea, Trematoda and 'Turbellaria') contain methylated cytosines within their genome compartments. Conclusions: Collectively, these findings provide the first direct evidence for a functionally conserved and enzymatically active DNA methylation system throughout the Platyhelminthes. Defining how this epigenetic feature shapes phenotypic diversity and development within the phylum represents an exciting new area of metazoan biology.}, language = {en} } @article{DopplerAppeltshauserKraemeretal.2015, author = {Doppler, Kathrin and Appeltshauser, Luise and Kr{\"a}mer, Heidrun H. and King Man Ng, Judy and Meinl, Edgar and Villmann, Carmen and Brophy, Peter and Dib-Hajj, Sulayman D. and Waxman, Stephen G. and Weishaupt, Andreas and Sommer, Claudia}, title = {Contactin-1 and Neurofascin-155/-186 Are Not Targets of Auto-Antibodies in Multifocal Motor Neuropathy}, series = {PLoS One}, volume = {10}, journal = {PLoS One}, number = {7}, doi = {10.1371/journal.pone.0134274}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-126156}, pages = {e0134274}, year = {2015}, abstract = {Multifocal motor neuropathy is an immune mediated disease presenting with multifocal muscle weakness and conduction block. IgM auto-antibodies against the ganglioside GM1 are detectable in about 50\% of the patients. Auto-antibodies against the paranodal proteins contactin-1 and neurofascin-155 and the nodal protein neurofascin-186 have been detected in subgroups of patients with chronic inflammatory demyelinating polyneuropathy. Recently, auto-antibodies against neurofascin-186 and gliomedin were described in more than 60\% of patients with multifocal motor neuropathy. In the current study, we aimed to validate this finding, using a combination of different assays for auto-antibody detection. In addition we intended to detect further auto-antibodies against paranodal proteins, specifically contactin-1 and neurofascin-155 in multifocal motor neuropathy patients' sera. We analyzed sera of 33 patients with well-characterized multifocal motor neuropathy for IgM or IgG anti-contactin-1, anti-neurofascin-155 or -186 antibodies using enzyme-linked immunosorbent assay, binding assays with transfected human embryonic kidney 293 cells and murine teased fibers. We did not detect any IgM or IgG auto-antibodies against contactin-1, neurofascin-155 or -186 in any of our multifocal motor neuropathy patients. We conclude that auto-antibodies against contactin-1, neurofascin-155 and -186 do not play a relevant role in the pathogenesis in this cohort with multifocal motor neuropathy.}, language = {en} }