@article{KosmalaSerflingDreheretal.2022, author = {Kosmala, Aleksander and Serfling, Sebastian E. and Dreher, Niklas and Lindner, Thomas and Schirbel, Andreas and Lapa, Constantin and Higuchi, Takahiro and Buck, Andreas K. and Weich, Alexander and Werner, Rudolf A.}, title = {Associations between normal organs and tumor burden in patients imaged with fibroblast activation protein inhibitor-directed positron emission tomography}, series = {Cancers}, volume = {14}, journal = {Cancers}, number = {11}, issn = {2072-6694}, doi = {10.3390/cancers14112609}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-275154}, year = {2022}, abstract = {(1) Background: We aimed to quantitatively investigate [\(^{68}\)Ga]Ga-FAPI-04 uptake in normal organs and to assess a relationship with the extent of FAPI-avid tumor burden. (2) Methods: In this single-center retrospective analysis, thirty-four patients with solid cancers underwent a total of 40 [\(^{68}\)Ga]Ga-FAPI-04 PET/CT scans. Mean standardized uptake values (SUV\(_{mean}\)) for normal organs were established by placing volumes of interest (VOIs) in the heart, liver, spleen, pancreas, kidneys, and bone marrow. Total tumor burden was determined by manual segmentation of tumor lesions with increased uptake. For tumor burden, quantitative assessment included maximum SUV (SUV\(_{max}\)), tumor volume (TV), and fractional tumor activity (FTA = TV × SUV\(_{mean}\)). Associations between uptake in normal organs and tumor burden were investigated by applying Spearman's rank correlation coefficient. (3) Results: Median SUV\(_{mean}\) values were 2.15 in the pancreas (range, 1.05-9.91), 1.42 in the right (range, 0.57-3.06) and 1.41 in the left kidney (range, 0.73-2.97), 1.2 in the heart (range, 0.46-2.59), 0.86 in the spleen (range, 0.55-1.58), 0.65 in the liver (range, 0.31-2.11), and 0.57 in the bone marrow (range, 0.26-0.94). We observed a trend towards significance for uptake in the myocardium and tumor-derived SUV\(_{max}\) (ρ = 0.29, p = 0.07) and TV (ρ = -0.30, p = 0.06). No significant correlation was achieved for any of the other organs: SUV\(_{max}\) (ρ ≤ 0.1, p ≥ 0.42), TV (ρ ≤ 0.11, p ≥ 0.43), and FTA (ρ ≤ 0.14, p ≥ 0.38). In a sub-analysis exclusively investigating patients with high tumor burden, significant correlations of myocardial uptake with tumor SUV\(_{max}\) (ρ = 0.44; p = 0.03) and tumor-derived FTA with liver uptake (ρ = 0.47; p = 0.02) were recorded. (4) Conclusions: In this proof-of-concept study, quantification of [\(^{68}\)Ga]Ga-FAPI-04 PET showed no significant correlation between normal organs and tumor burden, except for a trend in the myocardium. Those preliminary findings may trigger future studies to determine possible implications for treatment with radioactive FAP-targeted drugs, as higher tumor load or uptake may not lead to decreased doses in the majority of normal organs.}, language = {en} } @article{HartrampfBundschuhWeinzierletal.2022, author = {Hartrampf, Philipp E. and Bundschuh, Ralph A. and Weinzierl, Franz-Xaver and Serfling, Sebastian E. and Kosmala, Aleksander and Seitz, Anna Katharina and K{\"u}bler, Hubert and Buck, Andreas K. and Essler, Markus and Werner, Rudolf A.}, title = {mCRPC patients with PSA fluctuations under radioligand therapy have comparable survival benefits relative to patients with sustained PSA decrease}, series = {European Journal of Nuclear Medicine and Molecular Imaging}, volume = {49}, journal = {European Journal of Nuclear Medicine and Molecular Imaging}, number = {13}, doi = {10.1007/s00259-022-05910-w}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-324562}, pages = {4727-4735}, year = {2022}, abstract = {Introduction In men with metastatic castration-resistant prostate cancer (mCRPC) scheduled for prostate-specific membrane antigen (PSMA)-targeted radioligand therapy (RLT), biochemical response is assessed based on repeated measurements of prostate-specific antigen (PSA) levels. We aimed to determine overall survival (OS) in patients experiencing sustained PSA increase, decrease, or fluctuations during therapy. Materials and methods In this bicentric study, we included 176 mCRPC patients treated with PSMA-directed RLT. PSA levels were determined using blood samples prior to the first RLT and on the admission days for the following cycles. We calculated relative changes in PSA levels compared to baseline. Kaplan-Meier curves as well as log-rank test were used to compare OS of different subgroups, including patients with sustained PSA increase, decrease, or fluctuations (defined as change after initial decrease or increase after the first cycle). Results Sixty-one out of one hundred seventy-six (34.7\%) patients showed a sustained increase and 86/176 (48.8\%) a sustained decrease in PSA levels. PSA fluctuations were observed in the remaining 29/176 (16.5\%). In this subgroup, 22/29 experienced initial PSA decrease followed by an increase (7/29, initial increase followed by a decrease). Median OS of patients with sustained decrease in PSA levels was significantly longer when compared to patients with sustained increase of PSA levels (19 vs. 8 months; HR 0.35, 95\% CI 0.22-0.56; P < 0.001). Patients with PSA fluctuations showed a significantly longer median OS compared to patients with sustained increase of PSA levels (18 vs. 8 months; HR 0.49, 95\% CI 0.30-0.80; P < 0.01), but no significant difference relative to men with sustained PSA decrease (18 vs. 19 months; HR 1.4, 95\% CI 0.78-2.49; P = 0.20). In addition, in men experiencing PSA fluctuations, median OS did not differ significantly between patients with initial decrease or initial increase of tumor marker levels (16 vs. 18 months; HR 1.2, 95\% CI 0.38-4.05; P = 0.68). Conclusion Initial increase or decrease of PSA levels is sustained in the majority of patients undergoing RLT. Sustained PSA decrease was linked to prolonged survival and men with PSA fluctuations under treatment experienced comparable survival benefits. As such, transient tumor marker oscillations under RLT should rather not lead to treatment discontinuation, especially in the absence of radiological progression.}, language = {en} } @article{MichalskiSchloetelburgHartrampfetal.2023, author = {Michalski, Kerstin and Schl{\"o}telburg, Wiebke and Hartrampf, Philipp E. and Kosmala, Aleksander and Buck, Andreas K. and Hahner, Stefanie and Schirbel, Andreas}, title = {Radiopharmaceuticals for treatment of adrenocortical carcinoma}, series = {Pharmaceuticals}, volume = {17}, journal = {Pharmaceuticals}, number = {1}, issn = {1424-8247}, doi = {10.3390/ph17010025}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-355901}, year = {2023}, abstract = {Adrenocortical carcinoma (ACC) represents a rare tumor entity with limited treatment options and usually rapid tumor progression in case of metastatic disease. As further treatment options are needed and ACC metastases are sensitive to external beam radiation, novel theranostic approaches could complement established therapeutic concepts. Recent developments focus on targeting adrenal cortex-specific enzymes like the theranostic twin [\(^{123/131}\)I]IMAZA that shows a good image quality and a promising therapeutic effect in selected patients. But other established molecular targets in nuclear medicine such as the C-X-C motif chemokine receptor 4 (CXCR4) could possibly enhance the therapeutic regimen as well in a subgroup of patients. The aims of this review are to give an overview of innovative radiopharmaceuticals for the treatment of ACC and to present the different molecular targets, as well as to show future perspectives for further developments since a radiopharmaceutical with a broad application range is still warranted.}, language = {en} }