@article{IsraelOhsiekAlMomanietal.2016, author = {Israel, Ina and Ohsiek, Andrea and Al-Momani, Ehab and Albert-Weissenberger, Christiane and Stetter, Christian and Mencl, Stine and Buck, Andreas K. and Kleinschnitz, Christoph and Samnick, Samuel and Sir{\´e}n, Anna-Leena}, title = {Combined [\(^{18}\)F]DPA-714 micro-positron emission tomography and autoradiography imaging of microglia activation after closed head injury in mice}, series = {Journal of Neuroinflammation}, volume = {13}, journal = {Journal of Neuroinflammation}, number = {140}, doi = {10.1186/s12974-016-0604-9}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-146606}, year = {2016}, abstract = {Background Traumatic brain injury (TBI) is a major cause of death and disability. Neuroinflammation contributes to acute damage after TBI and modulates long-term evolution of degenerative and regenerative responses to injury. The aim of the present study was to evaluate the relationship of microglia activation to trauma severity, brain energy metabolism, and cellular reactions to injury in a mouse closed head injury model using combined in vivo PET imaging, ex vivo autoradiography, and immunohistochemistry. Methods A weight-drop closed head injury model was used to produce a mixed diffuse and focal TBI or a purely diffuse mild TBI (mTBI) in C57BL6 mice. Lesion severity was determined by evaluating histological damage and functional outcome using a standardized neuroscore (NSS), gliosis, and axonal injury by immunohistochemistry. Repeated intra-individual in vivo μPET imaging with the specific 18-kDa translocator protein (TSPO) radioligand [\(^{18}\)F]DPA-714 was performed on day 1, 7, and 16 and [\(^{18}\)F]FDG-μPET imaging for energy metabolism on days 2-5 after trauma using freshly synthesized radiotracers. Immediately after [\(^{18}\)F]DPA-714-μPET imaging on days 7 and 16, cellular identity of the [\(^{18}\)F]DPA-714 uptake was confirmed by exposing freshly cut cryosections to film autoradiography and successive immunostaining with antibodies against the microglia/macrophage marker IBA-1. Results Functional outcome correlated with focal brain lesions, gliosis, and axonal injury. [\(^{18}\)F]DPA-714-μPET showed increased radiotracer uptake in focal brain lesions on days 7 and 16 after TBI and correlated with reduced cerebral [\(^{18}\)F]FDG uptake on days 2-5, with functional outcome and number of IBA-1 positive cells on day 7. In autoradiography, [\(^{18}\)F]DPA-714 uptake co-localized with areas of IBA1-positive staining and correlated strongly with both NSS and the number of IBA1-positive cells, gliosis, and axonal injury. After mTBI, numbers of IBA-1 positive cells with microglial morphology increased in both brain hemispheres; however, uptake of [\(^{18}\)F]DPA-714 was not increased in autoradiography or in μPET imaging. Conclusions [\(^{18}\)F]DPA-714 uptake in μPET/autoradiography correlates with trauma severity, brain metabolic deficits, and microglia activation after closed head TBI.}, language = {en} } @article{LapaLueckerathKleinleinetal.2016, author = {Lapa, Constantin and L{\"u}ckerath, Katharina and Kleinlein, Irene and Monoranu, Camelia Maria and Linsenmann, Thomas and Kessler, Almuth F. and Rudelius, Martina and Kropf, Saskia and Buck, Andreas K. and Ernestus, Ralf-Ingo and Wester, Hans-J{\"u}rgen and L{\"o}hr, Mario and Herrmann, Ken}, title = {\(^{68}\)Ga-Pentixafor-PET/CT for Imaging of Chemokine Receptor 4 Expression in Glioblastoma}, series = {Theranostics}, volume = {6}, journal = {Theranostics}, number = {3}, doi = {10.7150/thno.13986}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-168174}, pages = {428-434}, year = {2016}, abstract = {Chemokine receptor-4 (CXCR4) has been reported to be overexpressed in glioblastoma (GBM) and to be associated with poor survival. This study investigated the feasibility of non-invasive CXCR4-directed imaging with positron emission tomography/computed tomography (PET/CT) using the radiolabelled chemokine receptor ligand \(^{68}\)Ga-Pentixafor. 15 patients with clinical suspicion on primary or recurrent glioblastoma (13 primary, 2 recurrent tumors) underwent \(^{68}\)Ga-Pentixafor-PET/CT for assessment of CXCR4 expression prior to surgery. O-(2-\(^{18}\)F-fluoroethyl)-L-tyrosine (\(^{18}\)F-FET) PET/CT images were available in 11/15 cases and were compared visually and semi-quantitatively (SUV\(_{max}\), SUV\(_{mean}\)). Tumor-to-background ratios (TBR) were calculated for both PET probes. \(^{68}\)Ga-Pentixafor-PET/CT results were also compared to histological CXCR4 expression on neuronavigated surgical samples. \(^{68}\)Ga-Pentixafor-PET/CT was visually positive in 13/15 cases with SUV\(_{mean}\) and SUV\(_{max}\) of 3.0±1.5 and 3.9±2.0 respectively. Respective values for \(^{18}\)F-FET were 4.4±2.0 (SUV\(_{mean}\)) and 5.3±2.3 (SUV\(_{max}\)). TBR for SUV\(_{mean}\) and SUV\(_{max}\) were higher for \(^{68}\)Ga-Pentixafor than for \(^{18}\)F-FET (SUV\(_{mean}\) 154.0±90.7 vs. 4.1±1.3; SUV\(_{max}\) 70.3±44.0 and 3.8±1.2, p<0.01), respectively. Histological analysis confirmed CXCR4 expression in tumor areas with high \(^{68}\)Ga-Pentixafor uptake; regions of the same tumor without apparent \(^{68}\)Ga-Pentixafor uptake showed no or low receptor expression. In this pilot study, \(^{68}\)Ga-Pentixafor retention has been observed in the vast majority of glioblastoma lesions and served as readout for non-invasive determination of CXCR4 expression. Given the paramount importance of the CXCR4/SDF-1 axis in tumor biology, \(^{68}\)Ga-Pentixafor-PET/CT might prove a useful tool for sensitive, non-invasive in-vivo quantification of CXCR4 as well as selection of patients who might benefit from CXCR4-directed therapy.}, language = {en} }