@article{KollertDombertDoeringetal.2015, author = {Kollert, Sina and Dombert, Benjamin and D{\"o}ring, Frank and Wischmeyer, Erhard}, title = {Activation of TRESK channels by the inflammatory mediator lysophosphatidic acid balances nociceptive signalling}, series = {Scientific Reports}, volume = {5}, journal = {Scientific Reports}, number = {12548}, doi = {10.1038/srep12548}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148312}, year = {2015}, abstract = {In dorsal root ganglia (DRG) neurons TRESK channels constitute a major current component of the standing outward current IK\(_{SO}\). A prominent physiological role of TRESK has been attributed to pain sensation. During inflammation mediators of pain e.g. lysophosphatidic acid (LPA) are released and modulate nociception. We demonstrate co-expression of TRESK and LPA receptors in DRG neurons. Heterologous expression of TRESK and LPA receptors in Xenopus oocytes revealed augmentation of basal K\(^{+}\) currents upon LPA application. In DRG neurons nociception can result from TRPV\(_{1}\) activation by capsaicin or LPA. Upon co-expression in Xenopus oocytes LPA simultaneously increased both depolarising TRPV\(_{1}\) and hyperpolarising TRESK currents. Patch-clamp recordings in cultured DRG neurons from TRESK[wt] mice displayed increased IK\(_{SO}\) after application of LPA whereas under these conditions IK\(_{SO}\) in neurons from TRESK[ko] mice remained unaltered. Under current-clamp conditions LPA application differentially modulated excitability in these genotypes upon depolarising pulses. Spike frequency was attenuated in TRESK[wt] neurons and, in contrast, augmented in TRESK[ko] neurons. Accordingly, excitation of nociceptive neurons by LPA is balanced by co-activation of TRESK channels. Hence excitation of sensory neurons is strongly controlled by the activity of TRESK channels, which therefore are good candidates for the treatment of pain disorders.}, language = {en} }