@article{SchwarzmeierLeehrBoehnleinetal.2020, author = {Schwarzmeier, Hanna and Leehr, Elisabeth Johanna and B{\"o}hnlein, Joscha and Seeger, Fabian Reinhard and Roesmann, Kati and Gathmann, Bettina and Herrmann, Martin J. and Siminski, Niklas and Jungh{\"o}fer, Markus and Straube, Thomas and Grotegerd, Dominik and Dannlowski, Udo}, title = {Theranostic markers for personalized therapy of spider phobia: Methods of a bicentric external cross-validation machine learning approach}, series = {International Journal of Methods in Psychiatric Research}, volume = {29}, journal = {International Journal of Methods in Psychiatric Research}, number = {2}, doi = {10.1002/mpr.1812}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-213430}, year = {2020}, abstract = {Objectives Embedded in the Collaborative Research Center "Fear, Anxiety, Anxiety Disorders" (CRC-TRR58), this bicentric clinical study aims at identifying biobehavioral markers of treatment (non-)response by applying machine learning methodology with an external cross-validation protocol. We hypothesize that a priori prediction of treatment (non-)response is possible in a second, independent sample based on multimodal markers. Methods One-session virtual reality exposure treatment (VRET) with patients with spider phobia was conducted on two sites. Clinical, neuroimaging, and genetic data were assessed at baseline, post-treatment and after 6 months. The primary and secondary outcomes defining treatment response are as follows: 30\% reduction regarding the individual score in the Spider Phobia Questionnaire and 50\% reduction regarding the individual distance in the behavioral avoidance test. Results N = 204 patients have been included (n = 100 in W{\"u}rzburg, n = 104 in M{\"u}nster). Sample characteristics for both sites are comparable. Discussion This study will offer cross-validated theranostic markers for predicting the individual success of exposure-based therapy. Findings will support clinical decision-making on personalized therapy, bridge the gap between basic and clinical research, and bring stratified therapy into reach. The study is registered at ClinicalTrials.gov (ID: NCT03208400).}, language = {en} } @article{BauneKonradGrotegerdetal.2012, author = {Baune, Bernhard T. and Konrad, Carsten and Grotegerd, Dominik and Suslow, Thomas and Birosova, Eva and Ohrmann, Patricia and Bauer, Jochen and Arolt, Volker and Heindel, Walter and Domschke, Katharina and Sch{\"o}ning, Sonja and Rauch, Astrid V. and Uhlmann, Christina and Kugel, Harald and Dannlowski, Udo}, title = {Interleukin-6 gene (IL-6): a possible role in brain morphology in the healthy adult brain}, series = {Journal of Neuroinflammation}, volume = {9}, journal = {Journal of Neuroinflammation}, number = {125}, doi = {10.1186/1742-2094-9-125}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-130804}, year = {2012}, abstract = {Background: Cytokines such as interleukin 6 (IL-6) have been implicated in dual functions in neuropsychiatric disorders. Little is known about the genetic predisposition to neurodegenerative and neuroproliferative properties of cytokine genes. In this study the potential dual role of several IL-6 polymorphisms in brain morphology is investigated. Methodology: In a large sample of healthy individuals (N = 303), associations between genetic variants of IL-6 (rs1800795; rs1800796, rs2069833, rs2069840) and brain volume (gray matter volume) were analyzed using voxel-based morphometry (VBM). Selection of single nucleotide polymorphisms (SNPs) followed a tagging SNP approach (e. g., Stampa algorigthm), yielding a capture 97.08\% of the variation in the IL-6 gene using four tagging SNPs. Principal findings/results In a whole-brain analysis, the polymorphism rs1800795 (-174 C/G) showed a strong main effect of genotype (43 CC vs. 150 CG vs. 100 GG; x = 24, y = -10, z = -15; F(2,286) = 8.54, p(uncorrected) = 0.0002; p(AlphaSim-corrected) = 0.002; cluster size k = 577) within the right hippocampus head. Homozygous carriers of the G-allele had significantly larger hippocampus gray matter volumes compared to heterozygous subjects. None of the other investigated SNPs showed a significant association with grey matter volume in whole-brain analyses. Conclusions/significance: These findings suggest a possible neuroprotective role of the G-allele of the SNP rs1800795 on hippocampal volumes. Studies on the role of this SNP in psychiatric populations and especially in those with an affected hippocampus (e.g., by maltreatment, stress) are warranted.}, language = {en} } @article{PittigHeinigGoerigketal.2021, author = {Pittig, Andre and Heinig, Ingmar and Goerigk, Stephan and Thiel, Freya and Hummel, Katrin and Scholl, Lucie and Deckert, J{\"u}rgen and Pauli, Paul and Domschke, Katharina and Lueken, Ulrike and Fydrich, Thomas and Fehm, Lydia and Plag, Jens and Str{\"o}hle, Andreas and Kircher, Tilo and Straube, Benjamin and Rief, Winfried and Koelkebeck, Katja and Arolt, Volker and Dannlowski, Udo and Margraf, J{\"u}rgen and Totzeck, Christina and Schneider, Silvia and Neudeck, Peter and Craske, Michelle G. and Hollandt, Maike and Richter, Jan and Hamm, Alfons and Wittchen, Hans-Ulrich}, title = {Efficacy of temporally intensified exposure for anxiety disorders: A multicenter randomized clinical trial}, series = {Depression and Anxiety}, volume = {38}, journal = {Depression and Anxiety}, number = {11}, doi = {10.1002/da.23204}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-257331}, pages = {1169-1181}, year = {2021}, abstract = {Background The need to optimize exposure treatments for anxiety disorders may be addressed by temporally intensified exposure sessions. Effects on symptom reduction and public health benefits should be examined across different anxiety disorders with comorbid conditions. Methods This multicenter randomized controlled trial compared two variants of prediction error-based exposure therapy (PeEx) in various anxiety disorders (both 12 sessions + 2 booster sessions, 100 min/session): temporally intensified exposure (PeEx-I) with exposure sessions condensed to 2 weeks (n = 358) and standard nonintensified exposure (PeEx-S) with weekly exposure sessions (n = 368). Primary outcomes were anxiety symptoms (pre, post, and 6-months follow-up). Secondary outcomes were global severity (across sessions), quality of life, disability days, and comorbid depression. Results Both treatments resulted in substantial improvements at post (PeEx-I: d\(_{within}\) = 1.50, PeEx-S: d\(_{within}\) = 1.78) and follow-up (PeEx-I: d\(_{within}\) = 2.34; PeEx-S: d\(_{within}\) = 2.03). Both groups showed formally equivalent symptom reduction at post and follow-up. However, time until response during treatment was 32\% shorter in PeEx-I (median = 68 days) than PeEx-S (108 days; TR\(_{PeEx-I}\)-I = 0.68). Interestingly, drop-out rates were lower during intensified exposure. PeEx-I was also superior in reducing disability days and improving quality of life at follow-up without increasing relapse. Conclusions Both treatment variants focusing on the transdiagnostic exposure-based violation of threat beliefs were effective in reducing symptom severity and disability in severe anxiety disorders. Temporally intensified exposure resulted in faster treatment response with substantial public health benefits and lower drop-out during the exposure phase, without higher relapse. Clinicians can expect better or at least comparable outcomes when delivering exposure in a temporally intensified manner.}, language = {en} }