@article{AuerhammerArrowsmithBraunschweigetal.2017, author = {Auerhammer, Dominic and Arrowsmith, Merle and Braunschweig, Holger and Dewhurst, Rian D. and Jim{\´e}nez-Halla, J. Oscar C. and Kupfer, Thomas}, title = {Nucleophilic addition and substitution at coordinatively saturated boron by facile 1,2-hydrogen shuttling onto a carbene donor}, series = {Chemical Science}, volume = {8}, journal = {Chemical Science}, number = {10}, doi = {10.1039/c7sc03193a}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170255}, pages = {7066-7071}, year = {2017}, abstract = {The reaction of [(cAAC\(^{Me}\))BH\(_{3}\)] (cAAC\(^{Me}\) = 1-(2,6-iPr\(_{2}\)C\(_{6}\)H\(_{3}\))-3,3,5,5-tetramethylpyrrolidin-2-ylidene) with a range of organolithium compounds led to the exclusive formation of the corresponding (dihydro)organoborates, Li\(^{+}\)[(cAAC\(^{Me}\)H)BH\(_{2}\)R]- (R = sp\(^{3}\)-, sp\(^{2}\)-, or sp-hybridised organic substituent), by migration of one boron-bound hydrogen atom to the adjacent carbene carbon of the cAAC ligand. A subsequent deprotonation/salt metathesis reaction with Me3SiCl or spontaneous LiH elimination yielded the neutral cAAC-supported mono(organo)boranes, [(cAAC\(^{Me}\)H)BH\(_{2}\)R]- (R]. Similarly the reaction of [cAAC\(^{Me}\))BH\(_{3}\)] with a neutral donor base L resulted in adduct formation by shuttling one boron-bound hydrogen to the cAAC ligand, to generate [(cAAC\(^{Me}\)H)BH\(_{2}\)L], either irreversibly (L = cAAC\(^{Me}\)) or reversibly (L = pyridine). Variable-temperature NMR data and DFT calculations on [(cAAC\(^{Me}\)H)BH\(_{2}\)(cAAC\(^{Me}\))] show that the hydrogen on the former carbene carbon atom exchanges rapidly with the boron-bound hydrides.}, language = {en} } @unpublished{AuerhammerArrowsmithBoehnkeetal.2018, author = {Auerhammer, Dominic and Arrowsmith, Merle and B{\"o}hnke, Julian and Braunschweig, Holger and Dewhurst, Rian D. and Kupfer, Thomas}, title = {Brothers from Another Mother: a Borylene and its Dimer are Non-Interconvertible but Connected through Reactivity}, series = {Chemical Science}, journal = {Chemical Science}, doi = {10.1039/C7SC04789D}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-157125}, year = {2018}, abstract = {The self-stabilizing, tetrameric cyanoborylene [(cAAC)B(CN)]4 (I, cAAC = 1-(2,6-diisopropylphenyl)-3,3,5,5-tetramethylpyrrolidin-2-ylidene) and its diborene relative, [(cAAC)(CN)B=B(CN)(cAAC)] (II), both react with disulfides and diselenides to yield the corresponding cAAC-supported cyanoboron bis(chalcogenides). Furthermore, reactions of I or II with elemental sulfur and selenium in various stoichiometries provided access to a variety of cAAC- stabilized cyanoboron-chalcogen heterocycles, including a unique dithiaborirane, a diboraselenirane, 1,3-dichalcogena-2,4-diboretanes, 1,3,4-trichalcogena- 2,5-diborolanes and a rare six-membered 1,2,4,5-tetrathia-3,6-diborinane. Stepwise addition reactions and solution stability studies provided insights into the mechanism of these reactions and the subtle differences in reactivity observed between I and II.}, language = {en} } @article{GaertnerMarekArrowsmithetal.2021, author = {G{\"a}rtner, Annalena and Marek, Matth{\"a}us and Arrowsmith, Merle and Auerhammer, Dominic and Radacki, Krzysztof and Prieschl, Dominic and Dewhurst, Rian D. and Braunschweig, Holger}, title = {Boron- versus Nitrogen-Centered Nucleophilic Reactivity of (Cyano)hydroboryl Anions: Synthesis of Cyano(hydro)organoboranes and 2-Aza-1,4-diborabutatrienes}, series = {Chemistry—A European Journal}, volume = {27}, journal = {Chemistry—A European Journal}, number = {37}, doi = {10.1002/chem.202101025}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256853}, pages = {9694-9699}, year = {2021}, abstract = {Cyclic alkyl(amino)carbene-stabilized (cyano)hydroboryl anions were synthesized by deprotonation of (cyano)dihydroborane precursors. While they display boron-centered nucleophilic reactivity towards organohalides, generating fully unsymmetrically substituted cyano(hydro)organoboranes, they show cyano-nitrogen-centered nucleophilic reactivity towards haloboranes, resulting in the formation of hitherto unknown linear 2-aza-1,4-diborabutatrienes.}, language = {en} }