@phdthesis{Dietl2004, author = {Dietl, Christian}, title = {Beobachtung und Steuerung molekularer Dynamik mit Femtosekunden-Laserpulsen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-12182}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2004}, abstract = {In dieser Arbeit wurden zwei Aspekte der Femtochemie mit den Methoden der Femtosekunden--Laserspektroskopie untersucht. Dabei wurden folgende Ziele verfolgt: Einerseits sollte die j{\"u}ngst entwickelte Technik der adaptiven Pulsformung auf das Problem bindungsselektiver Photodissoziationsreaktionen angewandt werden, zum Anderen bestand die Aufgabe darin, die nichtadiabatische, photoinduzierte Dynamik am Beispiel der Photoisomerisierung von Stilben mit Hilfe der Photoelektronenspektroskopie zeitaufgel{\"o}st zu untersuchen. Die Methode der adaptiven Pulsformung wurde mit dem Ziel eingesetzt, eine bindungsselektive Photodissoziation zu verwirklichen. Dazu wurde diese Technik in Verbindung mit einem massenspektroskopischen Nachweis der Photofragmente verwendet. Die Experimente wurden an einigen Spezies der Methylhalogenide CH2XY (X,Y = Halogen) durchgef{\"u}hrt. Diese Verbindungen wurden als Modellsysteme gew{\"a}hlt, da sich gezeigt hat, dass auf Grund stark gekoppelter konkurrierender Dissoziationskan{\"a}le durch modenselektive Laseranregung keine Kontrolle erreicht werden kann. Mit dem hier durchgef{\"u}hrten Experiment an CH2ClBr wurde erfolgreich erstmals die Anwendung der adaptiven Femtosekunden-Pulsformung auf das Problem einer bindungsselektiven Photodissoziation demonstriert. Dabei konnte eine Steigerung der Dissoziation der st{\"a}rkeren Kohlenstoff-Halogen Bindung um einen Faktor zwei erreicht werden. Weiterhin konnte experimentell gezeigt werden, dass das optimierte Produktverh{\"a}ltnis nicht durch eine einfache Variation der Laserpulsdauer oder Laserpulsenergie erzielt werden kann. Es wurde ein m{\"o}glicher Mechanismus f{\"u}r die Kontrolle diskutiert, der im Gegensatz zu einem unmodulierten Laserpuls die Wellenpaketdynamik auf neutralen dissoziativen Potentialfl{\"a}chen zur Steuerung des Produktverh{\"a}ltnisses involviert. Wie sich aus einer genaueren Analyse des Fragmentspektrums ergab, wird durch den optimalen Laserpuls die Dissoziation in komplexer Weise moduliert. Dies zeigte sich z.B. auch durch eine {\"A}nderung des Isotopenverh{\"a}ltnisses in der Ausbeute des dissoziierten Br-Liganden vor und nach der Optimierung. Dieser Frage nach einer isotopenselektiven Photodissoziation wurde in einem weiteren Experiment an CH2Br2 nachgegangen. Dabei konnte jedoch nur eine geringe Variation von etwa f{\"u}nf Prozent gegen{\"u}ber dem nat{\"u}rlichen Isotopenverh{\"a}ltnis festgestellt werden. Als gr{\"o}ßtes experimentelles Problem stellte sich dabei die starke Intensit{\"a}tsabh{\"a}ngigkeit der Produktausbeuten heraus, was die Suche nach der optimalen Pulsform stark einschr{\"a}nkte. Anhand des molekularen Photodetachments CH2I2-->CH2+I2 wurde gezeigt, dass durch die Analyse der optimalen Pulsformen Informationen {\"u}ber die Dynamik dieses Prozesses gewonnen werden k{\"o}nnen. Dazu wurde zun{\"a}chst in einem Pump-Probe-Experiment die Dynamik der I2-Fragmentation nach einer Mehrphotonen-Anregung von CH2I2 mit 266nm Laserpulsen untersucht. Dieses Experiment ergab, dass das Molek{\"u}l {\"u}ber einen angeregten Zwischenzustand auf einer sehr schnellen Zeitskala {\"u}ber Dissoziationskan{\"a}len zerfallen kann. Der dominante Kanal f{\"u}hrt zu einer sequentiellen Abgabe einer der I-Liganden und resultiert in den Photoprodukten CH2I und I Im anderen Kanal, dem molekularen Photodetachment, werden die Photoprodukte I2 und CH2 gebildet. In einem Kontrollexperiment wurde dann versucht, das molekulare Photodetachment gegen{\"u}ber dem dominanten sequentiellen Kanal mit geformten 800nm Laserpulsen zu optimieren. Es wurden Optimierungen mit dem Ziel der Maximierung der Ausbeute an den Photoprodukten I2 und CH2 gegen{\"u}ber CH2I durchgef{\"u}hrt. Diese Experimente ergaben, dass f{\"u}r beide Fragmente des molekularen Photodetachments eine Steigerung des Produktverh{\"a}ltnisses um etwa einen Faktor drei m{\"o}glich ist. Dabei zeigte sich, dass eine Maximierung auf ein Produktverh{\"a}ltnis (z.B. I2/CH2I) eine Steigerung des anderen um etwa den gleichen Faktor hervorruft. Dies ist ein deutlicher Hinweis, dass beide Photoprodukte {\"u}ber denselben Dissoziationskanal gebildet werden. Ein weiterer inweis wurde aus der Analyse der optimalen Pulsformen erhalten: In beiden F{\"a}llen weisen diese eine markante Doppelpulsstruktur mit einem zeitlichen Abstand von etwa 400fs auf. Dies erinnert stark an die Situation des Pump-Probe--Experiments, wo durch die Analyse des transienten Signals ebenfalls eine optimale Verz{\"o}gerungszeit zwischen dem Pump- und Probe-Laserpuls von etwa 400fs ermittelt werden konnte, bei der die Produktverh{\"a}ltnisse gerade maximal sind. Im Vergleich zur Massenspektroskopie liefert die Photoelektronenspektroskopie in der kinetischen Energie der Photoelektronen eine zus{\"a}tzliche Messgr{\"o}ße, die direkt Informationen {\"u}ber die Kerngeometrie des Systems liefern kann. Mit dieser Technik wurde die trans-cis-Photoisomerisierung von Stilben im ersten elektronisch angeregten Zustand S1(1Bu) zeitaufgel{\"o}st untersucht. Dabei ging es speziell um die Frage nach der Existenz eines weiteren 1Bu Zustandes, der in neueren theoretischen Untersuchungen diskutiert wurde. In einem Pump-Probe-Experiment wurde dazu das im Molekularstrahl pr{\"a}parierte trans-Stilben durch einen 266nm Laserpuls angeregt und die Dynamik durch einen weiteren 266nm Laserpuls abgefragt. Im Photoelektronenspektrum konnten zwei signifikante Beitr{\"a}ge mit unterschiedlicher Dynamik gefunden werden. Das transiente Signal des ersten Beitrags weist eine Zeitkonstante von etwa 20ps auf und konnte eindeutig der Isomerisierung des S1 Zustandes zugeordnet werden. Im Gegensatz dazu zeigte das Signal des zweiten Beitrags eine Zeitkonstante von 100fs. Dieses Signal k{\"o}nnte aus der Ionisation des S2 Zustandes resultieren, welcher bislang experimentell nicht beobachtet werden konnte.}, subject = {Ultrakurzer Lichtimpuls}, language = {de} }