@article{BiehlMerzDresleretal.2016, author = {Biehl, Stefanie C. and Merz, Christian J. and Dresler, Thomas and Heupel, Julia and Reichert, Susanne and Jacob, Christian P. and Deckert, J{\"u}rgen and Herrmann, Martin J.}, title = {Increase or Decrease of fMRI Activity in Adult Attention Deficit/ Hyperactivity Disorder: Does It Depend on Task Difficulty?}, series = {International Journal of Neuropsychopharmacology}, volume = {19}, journal = {International Journal of Neuropsychopharmacology}, number = {10}, doi = {10.1093/ijnp/pyw049}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-147551}, pages = {pyw049}, year = {2016}, abstract = {Background: Attention deficit/hyperactivity disorder has been shown to affect working memory, and fMRI studies in children and adolescents with attention deficit/hyperactivity disorder report hypoactivation in task-related attentional networks. However, studies with adult attention deficit/hyperactivity disorder patients addressing this issue as well as the effects of clinically valid methylphenidate treatment are scarce. This study contributes to closing this gap. Methods: Thirty-five adult patients were randomized to 6 weeks of double-blind placebo or methylphenidate treatment. Patients completed an fMRI n-back working memory task both before and after the assigned treatment, and matched healthy controls were tested and compared to the untreated patients. Results: There were no whole-brain differences between any of the groups. However, when specified regions of interest were investigated, the patient group showed enhanced BOLD responses in dorsal and ventral areas before treatment. This increase was correlated with performance across all participants and with attention deficit/hyperactivity disorder symptoms in the patient group. Furthermore, we found an effect of treatment in the right superior frontal gyrus, with methylphenidate-treated patients exhibiting increased activation, which was absent in the placebo-treated patients. Conclusions: Our results indicate distinct activation differences between untreated adult attention deficit/hyperactivity disorder patients and matched healthy controls during a working memory task. These differences might reflect compensatory efforts by the patients, who are performing at the same level as the healthy controls. We furthermore found a positive effect of methylphenidate on the activation of a frontal region of interest. These observations contribute to a more thorough understanding of adult attention deficit/hyperactivity disorder and provide impulses for the evaluation of therapy-related changes.}, language = {en} } @article{BiehlDreslerReifetal.2011, author = {Biehl, Stefanie C. and Dresler, Thomas and Reif, Andreas and Scheuerpflug, Peter and Deckert, J{\"u}rgen and Herrmann, Martin J.}, title = {Dopamine Transporter (DAT1) and Dopamine Receptor D4 (DRD4) Genotypes Differentially Impact on Electrophysiological Correlates of Error Processing}, series = {PLoS One}, volume = {6}, journal = {PLoS One}, number = {12}, doi = {10.1371/journal.pone.0028396}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-137930}, pages = {e28396}, year = {2011}, abstract = {Recent studies as well as theoretical models of error processing assign fundamental importance to the brain's dopaminergic system. Research about how the electrophysiological correlates of error processing—the error-related negativity (ERN) and the error positivity (Pe)—are influenced by variations of common dopaminergic genes, however, is still relatively scarce. In the present study, we therefore investigated whether polymorphisms in the DAT1 gene and in the DRD4 gene, respectively, lead to interindividual differences in these error processing correlates. One hundred sixty participants completed a version of the Eriksen Flanker Task while a 26-channel EEG was recorded. The task was slightly modified in order to increase error rates. During data analysis, participants were split into two groups depending on their DAT1 and their DRD4 genotypes, respectively. ERN and Pe amplitudes after correct responses and after errors as well as difference amplitudes between errors and correct responses were analyzed. We found a differential effect of DAT1 genotype on the Pe difference amplitude but not on the ERN difference amplitude, while the reverse was true for DRD4 genotype. These findings are in line with predictions from theoretical models of dopaminergic transmission in the brain. They furthermore tie results from clinical investigations of disorders impacting on the dopamine system to genetic variations known to be at-risk genotypes.}, language = {en} } @article{GuhnDreslerAndreattaetal.2014, author = {Guhn, Anne and Dresler, Thomas and Andreatta, Marta and M{\"u}ller, Laura D. and Hahn, Tim and Tupak, Sara V. and Polak, Thomas and Deckert, J{\"u}rgen and Herrmann, Martin J.}, title = {Medial prefrontal cortex stimulation modulates the processing of conditioned fear}, doi = {10.3389/fnbeh.2014.00044}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-111309}, year = {2014}, abstract = {The extinction of conditioned fear depends on an efficient interplay between the amygdala and the medial prefrontal cortex (mPFC). In rats, high-frequency electrical mPFC stimulation has been shown to improve extinction by means of a reduction of amygdala activity. However, so far it is unclear whether stimulation of homologues regions in humans might have similar beneficial effects. Healthy volunteers received one session of either active or sham repetitive transcranial magnetic stimulation (rTMS) covering the mPFC while undergoing a 2-day fear conditioning and extinction paradigm. Repetitive TMS was applied offline after fear acquisition in which one of two faces (CS+ but not CS-) was associated with an aversive scream (UCS). Immediate extinction learning (day 1) and extinction recall (day 2) were conducted without UCS delivery. Conditioned responses (CR) were assessed in a multimodal approach using fear-potentiated startle (FPS), skin conductance responses (SCR), functional near-infrared spectroscopy (fNIRS), and self-report scales. Consistent with the hypothesis of a modulated processing of conditioned fear after high-frequency rTMS, the active group showed a reduced CS+/CS- discrimination during extinction learning as evident in FPS as well as in SCR and arousal ratings. FPS responses to CS+ further showed a linear decrement throughout both extinction sessions. This study describes the first experimental approach of influencing conditioned fear by using rTMS and can thus be a basis for future studies investigating a complementation of mPFC stimulation to cognitive behavioral therapy (CBT).}, language = {en} } @article{KopfDreslerReichertsetal.2013, author = {Kopf, Juliane and Dresler, Thomas and Reicherts, Philipp and Herrmann, Martin J. and Reif, Andreas}, title = {The Effect of Emotional Content on Brain Activation and the Late Positive Potential in a Word n-back Task}, series = {PLoS ONE}, journal = {PLoS ONE}, doi = {10.1371/journal.pone.0075598}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-96687}, year = {2013}, abstract = {Introduction There is mounting evidence for the influence of emotional content on working memory performance. This is particularly important in light of the emotion processing that needs to take place when emotional content interferes with executive functions. In this study, we used emotional words of different valence but with similar arousal levels in an n-back task. Methods We examined the effects on activation in the prefrontal cortex by means of functional near-infrared spectroscopy (fNIRS) and on the late positive potential (LPP). FNIRS and LPP data were examined in 30 healthy subjects. Results Behavioral results show an influence of valence on the error rate depending on the difficulty of the task: more errors were made when the valence was negative and the task difficult. Brain activation was dependent both on the difficulty of the task and on the valence: negative valence of a word diminished the increase in activation, whereas positive valence did not influence the increase in activation, while difficulty levels increased. The LPP also differentiated between the different valences, and in addition was influenced by the task difficulty, the more difficult the task, the less differentiation could be observed. Conclusions Summarized, this study shows the influence of valence on a verbal working memory task. When a word contained a negative valence, the emotional content seemed to take precedence in contrast to words containing a positive valence. Working memory and emotion processing sites seemed to overlap and compete for resources even when words are carriers of the emotional content.}, language = {en} }