@phdthesis{Drisch2019, author = {Drisch, Michael}, title = {Beitr{\"a}ge zur Chemie schwach koordinierender Cyanoborat- und Fluorophosphat-Anionen}, doi = {10.25972/OPUS-14680}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-146802}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Zusammenfassung Synthetisch einfach zug{\"a}ngliche, thermisch und chemisch robuste schwach oder mittelstark wechselwirkende Anionen sind wichtige Bausteine f{\"u}r neue Materialien wie zum Beispiel ionische Fl{\"u}ssigkeiten und Li-Leitsalze. Im Rahmen der vorliegenden Arbeit wurden zum einen neue schwach koordinierende Borat- und Pentafluorophosphat-Anionen entwickelt und zum anderen effiziente Synthesen zu bereits bekannten Cyanoborat-Anionen ausgearbeitet. Aufgrund ihrer interessanten Eigenschaften wie niedriger Viskosit{\"a}t und elektrochemischer Stabilit{\"a}t wird der Einsatz von ionischen Fl{\"u}ssigkeiten mit dem [BH(CN)3]--Anion seit l{\"a}ngerer Zeit intensiv untersucht. Ausgehend von Na[BH4] wurde eine {\"a}ußerst effiziente Synthese zu K[BH(CN)3], die auch f{\"u}r den molaren Maßstab geeignet ist, entwickelt. Die Synthese verl{\"a}uft {\"u}ber Tricarboxylatohydridoborate als Zwischenstufen, welche sich bei vergleichsweise niedrigen Temperaturen von 60 °C weiter mit TMSCN und TMSCl (Kat.) zum [BH(CN)3]--Anion cyanieren lassen. Durch schrittweise Cyanierung mit TMSCN, ohne den Einsatz eines Lewis-S{\"a}ure-Katalysators wie TMSCl, wurden die Carboxylatocyanoborate M[BH(CN)(OC(O)Et)2] (M+ = Na+, [Ph4P]+) und M[BH(CN)2(OC(O)Et)] (M+ = Na+, [EMIm]+) synthetisiert und zum Teil strukturell charakterisiert. [EMIm][BH(CN)2(OC(O)Et)] ist eine bei Raumtemperatur fl{\"u}ssige ionische Fl{\"u}ssigkeit mit einem Schmelzpunkt von -78 °C. Die dynamische Viskosit{\"a}t ist mit 44.81 mPa∙s bei 20 °C etwa vier Mal so hoch wie die von [EMIm][BH(CN)3] mit 12.36 mPa∙s. Ausgehend von den nun in sehr guten Ausbeuten und in hohen Reinheiten zug{\"a}nglichen Cyanohydridoboraten wurden verschiedene Fluorierungsmethoden untersucht, um daraus Cyanofluoroborate zu synthetisieren. So wurde K[BF(CN)3] ausgehend von K[BH(CN)3] {\"u}ber direkte Fluorierung mit F2 in aHF oder F-TEDA, XeF2 sowie (Et2N)SF3 in Acetonitril synthetisiert. K[BH(CN)3] reagiert in aHF in Gegenwart von Fluor jedoch nicht selektiv zu K[BF(CN)3]. Es kommt zur teilweisen Addition eines HF-Molek{\"u}ls an eine Cyanogruppe, welche nach w{\"a}ssriger Aufarbeitung K[BF(CN)2(C(O)NH2)] liefert. Die S{\"a}ureamid-Gruppe l{\"a}sst sich aber anschließend mit COCl2 leicht entw{\"a}ssern, sodass K[BF(CN)3] selektiv erhalten wird. Ebenfalls ist eine indirekte Fluorierung durch vorheriges Umsetzen eines entsprechenden [BH(CN)3]- Borats mit Cl2 oder Br2 und nachfolgender Fluorierung mit Et3N∙3HF m{\"o}glich. Die gezeigten Fluorierungen wurden ebenfalls auf weitere Hydridoborate {\"u}bertragen. Na[BH(CN)2(OC(O)Et)] wurde unter Erhalt der Propoxylato-Gruppe in einer Eintopfsynthese mit Br2 und Et3N∙3HF zu Na[BF(CN)2(OC(O)Et)] fluoriert. K[BF(CN)3] konnte ausgehend von K[BH(CN)3] ebenfalls mit Hilfe der elektrochemischen Fluorierung (ECF, Simons-Prozess) im Gramm-Maßstab hergestellt werden. Dabei gelang die erste Fluorierung einer B-H-Spezies mit dem Simons-Prozess {\"u}berhaupt. Bei der ECF von K[BF(CN)3] wurden bei fortschreitender Reaktionsdauer NMR-spektroskopisch verschiedene CF3-Borate beobachtet. W{\"a}hrend der ECF kommt es also teilweise zu einer C≡N-Bindungsspaltung. Die Fluorierung von CN-Gruppen mit ClF zu CF3-Gruppen wurde ebenfalls auf eine Reihe weiterer Borate angewendet. So wurden K[(C2F5)B(CF3)3] und K[(C2F5)BF(CF3)2] ausgehend von K[(C2F5)B(CN)3] und K[(C2F5)BF(CN)2] synthetisiert und mit einigen Zwischenstufen NMR-spektroskopisch charakterisiert. Neben Boraten sind besonders Salze von schwach koordinierende Phosphat-Anionen wie Li[PF6] f{\"u}r elektrochemische Anwendungen von Interesse. Auf Basis von verschiedenen aminverbr{\"u}ckten Phosphons{\"a}uren wurden neuartige Salze mit mehrfach negativ geladenen Oligo-Phosphat-Anionen synthetisiert. {((HO)2(O)PCH2)2NCH2}2 und ((HO)2(O)PCH2)3N reagieren mit wasserfreiem Fluorwasserstoff zu den entsprechenden Oligo-Pentafluorophosphat-Anionen [{(F5PCH2)2NHCH2}2]2- und [(F5PCH2)2NH]2-. Die verbr{\"u}ckenden Stickstoffatome werden dabei protoniert, was zu zweifach negativ geladenen Phosphat-Anionen f{\"u}hrt. Unterschiedliche Salze mit organischen und anorganischen Kationen wurde so isoliert. Weitere Salze, wie das [Ph3C]-, [EMIm]- oder das Li-Salz, wurden durch Metathesereaktionen erhalten. Das Stickstoffatom in -Position zum Phosphoratom scheint essenziel f{\"u}r die Fluorierung der Phosphons{\"a}ure-Gruppe mit aHF zu einer PF5-Gruppe zu sein. Dies wurde durch die Umsetzung anderer funktionalisierter Phosphons{\"a}uren wie z.B. (HO)2(O)PMe best{\"a}tigt, da es dabei nur zu einer Teilfluorierung zum F2(O)PMe kam. Die Kalium-Salze K2[{(F5PCH2)2NHCH2}2] und K2[(F5PCH2)3NH] lassen sich mit KH in DMF deprotonieren und so Salze mit den dreifach bzw. vierfach negativ geladenen Anionen [{(F5PCH2)2NCH2}2]4- und [(F5PCH2)3N]3- erhalten. K4[{(F5PCH2)2NCH2}2] und K3[(F5PCH2)2N] sind hydrolyseempfindlich und werden leicht protoniert. Die deprotonierten Anionen k{\"o}nnen jedoch mit Methyliodid oder Allyliodid weiter umgesetzt und so funktionalisiert werden. Das methylierte bzw. allylierte Stickstoffatom sorgt f{\"u}r eine deutliche Stabilisierung der Anionen. So steigt zum Beispiel die Zersetzungstemperatur von K2[{(F5PCH2)2N(CH3)CH2}2] im Vergleich zu K2[{(F5PCH2)2NHCH2}2] um {\"u}ber 100 °C auf 300 °C. Des Weiteren steigt auch die Stabilit{\"a}t gegen{\"u}ber Hydrolyse bei Salzen mit den methylierten Phosphat-Anionen deutlich an. K2[{(F5PCH2)2NHCH2}2] wird nach einigen Minuten in H2O langsam hydrolisiert. Dagegen ist K2[{(F5PCH2)2N(CH3)CH2}2] mehrere Tage sowohl wasser- als auch basenstabil. Das durch eine Metathesereaktion von Li[BF4] mit K2[{(F5PCH2)2N(CH3)CH2}2] erhaltene Li2[{(F5PCH2)2N(CH3)CH2}2] hat in -Butyrolacton eine Leitf{\"a}higkeit von 2.67 mS∙cm-1 (c = 0.1 mol∙L-1). Einige Oligo-Pentafluorophosphate wurden ebenfalls strukturanalytisch charakterisiert.}, subject = {Anion}, language = {de} } @article{DrischBischoffSprengeretal.2020, author = {Drisch, Michael and Bischoff, Lisa A. and Sprenger, Jan A. P. and Hennig, Philipp T. and Wirthensohn, Raphael and Landmann, Johannes and Konieczka, Szymon Z. and Hailmann, Michael and Ignat'ev, Nikolai V. and Finze, Maik}, title = {Innovative Syntheses of Cyano(fluoro)borates: Catalytic Cyanation, Electrochemical and Electrophilic Fluorination}, series = {Chemistry - A European Journal}, volume = {26}, journal = {Chemistry - A European Journal}, number = {50}, doi = {10.1002/chem.202002324}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-216027}, pages = {11625 -- 11633}, year = {2020}, abstract = {Different types of high-yield, easily scalable syntheses for cyano(fluoro)borates Kt[BF\(_{n}\)(CN)\(_{4-n}\)] (n=0-2) (Kt=cation), which are versatile building blocks for materials applications and chemical synthesis, have been developed. Tetrafluoroborates react with trimethylsilyl cyanide in the presence of metal-free Br{\o}nsted or Lewis acid catalysts under unprecedentedly mild conditions to give tricyanofluoroborates or tetracyanoborates. Analogously, pentafluoroethyltrifluoroborates are converted into pentafluoroethyltricyanoborates. Boron trifluoride etherate, alkali metal salts, and trimethylsilyl cyanide selectively yield dicyanodifluoroborates or tricyanofluoroborates. Fluorination of cyanohydridoborates is the third reaction type that includes direct fluorination with, for example, elemental fluorine, stepwise halogenation/fluorination reactions, and electrochemical fluorination (ECF) according to the Simons process. In addition, fluorination of [BH(CN)\(_{2}\){OC(O)Et}]\(^{-}\) to result in [BF(CN)\(_{2}\){OC(O)Et}]\(^{-}\) is described.}, language = {en} }