@article{VigoritoKuchenbaeckerBeesleyetal.2016, author = {Vigorito, Elena and Kuchenbaecker, Karoline B. and Beesley, Jonathan and Adlard, Julian and Agnarsson, Bjarni A. and Andrulis, Irene L. and Arun, Banu K. and Barjhoux, Laure and Belotti, Muriel and Benitez, Javier and Berger, Andreas and Bojesen, Anders and Bonanni, Bernardo and Brewer, Carole and Caldes, Trinidad and Caligo, Maria A. and Campbell, Ian and Chan, Salina B. and Claes, Kathleen B. M. and Cohn, David E. and Cook, Jackie and Daly, Mary B. and Damiola, Francesca and Davidson, Rosemarie and de Pauw, Antoine and Delnatte, Capucine and Diez, Orland and Domchek, Susan M. and Dumont, Martine and Durda, Katarzyna and Dworniczak, Bernd and Easton, Douglas F. and Eccles, Diana and Ardnor, Christina Edwinsdotter and Eeles, Ros and Ejlertsen, Bent and Ellis, Steve and Evans, D. Gareth and Feliubadalo, Lidia and Fostira, Florentia and Foulkes, William D. and Friedman, Eitan and Frost, Debra and Gaddam, Pragna and Ganz, Patricia A. and Garber, Judy and Garcia-Barberan, Vanesa and Gauthier-Villars, Marion and Gehrig, Andrea and Gerdes, Anne-Marie and Giraud, Sophie and Godwin, Andrew K. and Goldgar, David E. and Hake, Christopher R. and Hansen, Thomas V. O. and Healey, Sue and Hodgson, Shirley and Hogervorst, Frans B. L. and Houdayer, Claude and Hulick, Peter J. and Imyanitov, Evgeny N. and Isaacs, Claudine and Izatt, Louise and Izquierdo, Angel and Jacobs, Lauren and Jakubowska, Anna and Janavicius, Ramunas and Jaworska-Bieniek, Katarzyna and Jensen, Uffe Birk and John, Esther M. and Vijai, Joseph and Karlan, Beth Y. and Kast, Karin and Khan, Sofia and Kwong, Ava and Laitman, Yael and Lester, Jenny and Lesueur, Fabienne and Liljegren, Annelie and Lubinski, Jan and Mai, Phuong L. and Manoukian, Siranoush and Mazoyer, Sylvie and Meindl, Alfons and Mensenkamp, Arjen R. and Montagna, Marco and Nathanson, Katherine L. and Neuhausen, Susan L. and Nevanlinna, Heli and Niederacher, Dieter and Olah, Edith and Olopade, Olufunmilayo I. and Ong, Kai-ren and Osorio, Ana and Park, Sue Kyung and Paulsson-Karlsson, Ylva and Pedersen, Inge Sokilde and Peissel, Bernard and Peterlongo, Paolo and Pfeiler, Georg and Phelan, Catherine M. and Piedmonte, Marion and Poppe, Bruce and Pujana, Miquel Angel and Radice, Paolo and Rennert, Gad and Rodriguez, Gustavo C. and Rookus, Matti A. and Ross, Eric A. and Schmutzler, Rita Katharina and Simard, Jacques and Singer, Christian F. and Slavin, Thomas P. and Soucy, Penny and Southey, Melissa and Steinemann, Doris and Stoppa-Lyonnet, Dominique and Sukiennicki, Grzegorz and Sutter, Christian and Szabo, Csilla I. and Tea, Muy-Kheng and Teixeira, Manuel R. and Teo, Soo-Hwang and Terry, Mary Beth and Thomassen, Mads and Tibiletti, Maria Grazia and Tihomirova, Laima and Tognazzo, Silvia and van Rensburg, Elizabeth J. and Varesco, Liliana and Varon-Mateeva, Raymonda and Vratimos, Athanassios and Weitzel, Jeffrey N. and McGuffog, Lesley and Kirk, Judy and Toland, Amanda Ewart and Hamann, Ute and Lindor, Noralane and Ramus, Susan J. and Greene, Mark H. and Couch, Fergus J. and Offit, Kenneth and Pharoah, Paul D. P. and Chenevix-Trench, Georgia and Antoniou, Antonis C.}, title = {Fine-Scale Mapping at 9p22.2 Identifies Candidate Causal Variants That Modify Ovarian Cancer Risk in BRCA1 and BRCA2 Mutation Carriers}, series = {PLoS ONE}, volume = {11}, journal = {PLoS ONE}, number = {7}, doi = {10.1371/journal.pone.0158801}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-166869}, pages = {e0158801}, year = {2016}, abstract = {Population-based genome wide association studies have identified a locus at 9p22.2 associated with ovarian cancer risk, which also modifies ovarian cancer risk in BRCA1 and BRCA2 mutation carriers. We conducted fine-scale mapping at 9p22.2 to identify potential causal variants in BRCA1 and BRCA2 mutation carriers. Genotype data were available for 15,252 (2,462 ovarian cancer cases) BRCA1 and 8,211 (631 ovarian cancer cases) BRCA2 mutation carriers. Following genotype imputation, ovarian cancer associations were assessed for 4,873 and 5,020 SNPs in BRCA1 and BRCA 2 mutation carriers respectively, within a retrospective cohort analytical framework. In BRCA1 mutation carriers one set of eight correlated candidate causal variants for ovarian cancer risk modification was identified (top SNP rs10124837, HR: 0.73, 95\%CI: 0.68 to 0.79, p-value 2× 10-16). These variants were located up to 20 kb upstream of BNC2. In BRCA2 mutation carriers one region, up to 45 kb upstream of BNC2, and containing 100 correlated SNPs was identified as candidate causal (top SNP rs62543585, HR: 0.69, 95\%CI: 0.59 to 0.80, p-value 1.0 × 10-6). The candidate causal in BRCA1 mutation carriers did not include the strongest associated variant at this locus in the general population. In sum, we identified a set of candidate causal variants in a region that encompasses the BNC2 transcription start site. The ovarian cancer association at 9p22.2 may be mediated by different variants in BRCA1 mutation carriers and in the general population. Thus, potentially different mechanisms may underlie ovarian cancer risk for mutation carriers and the general population.}, language = {en} } @article{DumontWeberLassalleJolyBeauparlantetal.2022, author = {Dumont, Martine and Weber-Lassalle, Nana and Joly-Beauparlant, Charles and Ernst, Corinna and Droit, Arnaud and Feng, Bing-Jian and Dubois, St{\´e}phane and Collin-Deschesnes, Annie-Claude and Soucy, Penny and Vall{\´e}e, Maxime and Fournier, Fr{\´e}d{\´e}ric and Lema{\c{c}}on, Audrey and Adank, Muriel A. and Allen, Jamie and Altm{\"u}ller, Janine and Arnold, Norbert and Ausems, Margreet G. E. M. and Berutti, Riccardo and Bolla, Manjeet K. and Bull, Shelley and Carvalho, Sara and Cornelissen, Sten and Dufault, Michael R. and Dunning, Alison M. and Engel, Christoph and Gehrig, Andrea and Geurts-Giele, Willemina R. R. and Gieger, Christian and Green, Jessica and Hackmann, Karl and Helmy, Mohamed and Hentschel, Julia and Hogervorst, Frans B. L. and Hollestelle, Antoinette and Hooning, Maartje J. and Horv{\´a}th, Judit and Ikram, M. Arfan and Kaulfuß, Silke and Keeman, Renske and Kuang, Da and Luccarini, Craig and Maier, Wolfgang and Martens, John W. M. and Niederacher, Dieter and N{\"u}rnberg, Peter and Ott, Claus-Eric and Peters, Annette and Pharoah, Paul D. P. and Ramirez, Alfredo and Ramser, Juliane and Riedel-Heller, Steffi and Schmidt, Gunnar and Shah, Mitul and Scherer, Martin and St{\"a}bler, Antje and Strom, Tim M. and Sutter, Christian and Thiele, Holger and van Asperen, Christi J. and van der Kolk, Lizet and van der Luijt, Rob B. and Volk, Alexander E. and Wagner, Michael and Waisfisz, Quinten and Wang, Qin and Wang-Gohrke, Shan and Weber, Bernhard H. F. and Devilee, Peter and Tavtigian, Sean and Bader, Gary D. and Meindl, Alfons and Goldgar, David E. and Andrulis, Irene L. and Schmutzler, Rita K. and Easton, Douglas F. and Schmidt, Marjanka K. and Hahnen, Eric and Simard, Jacques}, title = {Uncovering the contribution of moderate-penetrance susceptibility genes to breast cancer by whole-exome sequencing and targeted enrichment sequencing of candidate genes in women of European ancestry}, series = {Cancers}, volume = {14}, journal = {Cancers}, number = {14}, issn = {2072-6694}, doi = {10.3390/cancers14143363}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-281768}, year = {2022}, abstract = {Rare variants in at least 10 genes, including BRCA1, BRCA2, PALB2, ATM, and CHEK2, are associated with increased risk of breast cancer; however, these variants, in combination with common variants identified through genome-wide association studies, explain only a fraction of the familial aggregation of the disease. To identify further susceptibility genes, we performed a two-stage whole-exome sequencing study. In the discovery stage, samples from 1528 breast cancer cases enriched for breast cancer susceptibility and 3733 geographically matched unaffected controls were sequenced. Using five different filtering and gene prioritization strategies, 198 genes were selected for further validation. These genes, and a panel of 32 known or suspected breast cancer susceptibility genes, were assessed in a validation set of 6211 cases and 6019 controls for their association with risk of breast cancer overall, and by estrogen receptor (ER) disease subtypes, using gene burden tests applied to loss-of-function and rare missense variants. Twenty genes showed nominal evidence of association (p-value < 0.05) with either overall or subtype-specific breast cancer. Our study had the statistical power to detect susceptibility genes with effect sizes similar to ATM, CHEK2, and PALB2, however, it was underpowered to identify genes in which susceptibility variants are rarer or confer smaller effect sizes. Larger sample sizes would be required in order to identify such genes.}, language = {en} }