@article{HaeussingerHeinzelHahnetal.2011, author = {Haeussinger, Florian B. and Heinzel, Sebastian and Hahn, Tim and Schecklmann, Martin and Ehlis, Ann-Christine and Fallgatter, Andreas J.}, title = {Simulation of Near-Infrared Light Absorption Considering Individual Head and Prefrontal Cortex Anatomy: Implications for Optical Neuroimaging}, series = {PLoS ONE}, volume = {6}, journal = {PLoS ONE}, number = {10}, doi = {10.1371/journal.pone.0026377}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-142311}, pages = {e26377}, year = {2011}, abstract = {Functional near-infrared spectroscopy (fNIRS) is an established optical neuroimaging method for measuring functional hemodynamic responses to infer neural activation. However, the impact of individual anatomy on the sensitivity of fNIRS measuring hemodynamics within cortical gray matter is still unknown. By means of Monte Carlo simulations and structural MRI of 23 healthy subjects (mean age: (25.0 +/- 2.8) years), we characterized the individual distribution of tissue-specific NIR-light absorption underneath 24 prefrontal fNIRS channels. We, thereby, investigated the impact of scalp-cortex distance (SCD), frontal sinus volume as well as sulcal morphology on gray matter volumes (V(gray)) traversed by NIR-light, i.e. anatomy-dependent fNIRS sensitivity. The NIR-light absorption between optodes was distributed describing a rotational ellipsoid with a mean penetration depth of (23.6 +/- 0.7) mm considering the deepest 5\% of light. Of the detected photon packages scalp and bone absorbed (96.4 +/- 9: 7)\% and V(gray) absorbed (3.1 +/- 1.8)\% of the energy. The mean V(gray) volume (1.1 +/- 0.4)cm(3) was negatively correlated (r = - .76) with the SCD and frontal sinus volume (r = - .57) and was reduced by 41.5\% in subjects with relatively large compared to small frontal sinus. Head circumference was significantly positively correlated with the mean SCD (r = .46) and the traversed frontal sinus volume (r = .43). Sulcal morphology had no significant impact on V(gray). Our findings suggest to consider individual SCD and frontal sinus volume as anatomical factors impacting fNIRS sensitivity. Head circumference may represent a practical measure to partly control for these sources of error variance.}, language = {en} } @article{RosenbaumBlumSchweizeretal.2018, author = {Rosenbaum, David and Blum, Leonore and Schweizer, Paul and Fallgatter, Andreas J. and Herrmann, Martin J. and Ehlis, Ann-Christine and Metzger, Florian G.}, title = {Comparison of speed versus complexity effects on the hemodynamic response of the trail making test in block designs}, series = {Neurophotonics}, volume = {5}, journal = {Neurophotonics}, number = {4}, doi = {10.1117/1.NPh.5.4.045007}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-226982}, pages = {045007, 1-9}, year = {2018}, abstract = {The use of functional near-infrared spectroscopy (fNIRS) in block designs provides measures of cortical activity in ecologically valid environments. However, in some cases, the use of block designs may be problematic when data are not corrected for performance in a time-restricted block. We sought to investigate the effects of task complexity and processing speed on hemodynamic responses in an fNIRS block design. To differentiate the effects of task complexity and processing speed, 20 subjects completed the trail making test (TMT) in two versions (TMT-A versus TMT-B) and three different speed levels (slow versus moderate versus fast). During TMT-A, subjects are asked to connect encircled numbers in numerically ascending order (1-2-3 ... ). In the more complex TMT-B, subjects are instructed to connect encircled numbers and letters in alternating ascending order (1-A-2-B ... ). To illustrate the obscuring effects of processing speed on task complexity, we perform two different analyses. First, we analyze the classical measures of oxygenated blood, and second, we analyze the measures corrected for the number of processed items. Our results show large effects for processing speed within the bilateral inferior frontal gyrus, left dorsolateral prefrontal cortex, and superior parietal lobule (SPL). The TMT contrast did not show significant effects with classical measures, although trends are observed for higher activation during TMT-B. When corrected for processed items, higher activity for TMT-B in comparison to TMT-A is found within the SPL. The results are discussed in light of recent research designs, and simple to use correction methods are suggested. (c) The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.}, language = {en} } @article{ZieglerEhlisWeberetal.2021, author = {Ziegler, Georg C. and Ehlis, Ann-Christine and Weber, Heike and Vitale, Maria Rosaria and Z{\"o}ller, Johanna E. M. and Ku, Hsing-Ping and Schiele, Miriam A. and K{\"u}rbitz, Laura I. and Romanos, Marcel and Pauli, Paul and Kalisch, Raffael and Zwanzger, Peter and Domschke, Katharina and Fallgatter, Andreas J. and Reif, Andreas and Lesch, Klaus-Peter}, title = {A Common CDH13 Variant is Associated with Low Agreeableness and Neural Responses to Working Memory Tasks in ADHD}, series = {Genes}, volume = {12}, journal = {Genes}, number = {9}, issn = {2073-4425}, doi = {10.3390/genes12091356}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-245220}, year = {2021}, abstract = {The cell—cell signaling gene CDH13 is associated with a wide spectrum of neuropsychiatric disorders, including attention-deficit/hyperactivity disorder (ADHD), autism, and major depression. CDH13 regulates axonal outgrowth and synapse formation, substantiating its relevance for neurodevelopmental processes. Several studies support the influence of CDH13 on personality traits, behavior, and executive functions. However, evidence for functional effects of common gene variation in the CDH13 gene in humans is sparse. Therefore, we tested for association of a functional intronic CDH13 SNP rs2199430 with ADHD in a sample of 998 adult patients and 884 healthy controls. The Big Five personality traits were assessed by the NEO-PI-R questionnaire. Assuming that altered neural correlates of working memory and cognitive response inhibition show genotype-dependent alterations, task performance and electroencephalographic event-related potentials were measured by n-back and continuous performance (Go/NoGo) tasks. The rs2199430 genotype was not associated with adult ADHD on the categorical diagnosis level. However, rs2199430 was significantly associated with agreeableness, with minor G allele homozygotes scoring lower than A allele carriers. Whereas task performance was not affected by genotype, a significant heterosis effect limited to the ADHD group was identified for the n-back task. Heterozygotes (AG) exhibited significantly higher N200 amplitudes during both the 1-back and 2-back condition in the central electrode position Cz. Consequently, the common genetic variation of CDH13 is associated with personality traits and impacts neural processing during working memory tasks. Thus, CDH13 might contribute to symptomatic core dysfunctions of social and cognitive impairment in ADHD.}, language = {en} }