@article{BeckerHeEinfeldtetal.1993, author = {Becker, Charles R. and He, L. and Einfeldt, S. and Wu, Y. S. and L{\´e}rondel, G. and Heinke, H. and Oehling, S. and Bicknell-Tassius, R. N. and Landwehr, G.}, title = {Molecular beam epitaxial growth and characterization of (100) HgSe on GaAs}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-50947}, year = {1993}, abstract = {In this paper, we present results on the first MBE growth of HgSe. The influence of the GaAs substrate temperature as well as the Hg and Se fluxes on the growth and the electrical properties has been investigated. It has been found that the growth rate is very low at substrate temperatures above 120°C. At 120°C and at lower temperatures, the growth rate is appreciably higher. The sticking coefficient of Se seems to depend inversely on the Hg/Se flux ratio. Epitaxial growth could be maintained at 70°C with Hg/Se flux ratios between lOO and ISO, and at 160°C between 280 and 450. The electron mobilities of these HgSe epilayers at room temperature decrease from a maximum value of 8.2 x 10^3 cm2 /V' s with increasing electron concentration. The concentration was found to be between 6xlO^17 and 1.6x10^19 cm- 3 at room temperature. Rocking curves from X-ray diffraction measurements of the better epilayers have a full width at half maximum of 5S0 arc sec.}, subject = {Physik}, language = {en} } @article{BeckerLatussekHeinkeetal.1993, author = {Becker, Charles, R. and Latussek, V. and Heinke, H. and Regnet, M. M. and Goschenhofer, F. and Einfeldt, S. and He, L. and Bangert, E. and Kraus, M. M. and Landwehr, G.}, title = {Molecular beam epitaxial growth and characterization of (001) Hg\(_{1-x}\) Cd\(_x\) Te-HgTe superlattices}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-50959}, year = {1993}, abstract = {The molecular beam epitaxially growth of (001) Hg\(_{1-x}\) Cd\(_z\) Te-HgTe superlattices has been systematically investigated. The well width as well as the period were determined directly by X-ray diffraction. This was accomphshed for the well width by exploiting the high reflectivity from HgTe and the low reflectivity from CdTe for the (002) Bragg reflection. Knowing the well and barrier thicknesses we have been able to set an upper limit on the aver~ge composition of the barriers, Xl, by annealing the superlattice and then measuring the composition of the. resultmg alloy. Xb was shown to decrease exponentially with decreasing barrier width. Xb is appreciably smaller m. narrow barriers due to the increased significance of interdiffusion in the Hg\(_{1-x}\)Cd\(_x\) Te/HgTe interface in narrow barriers. The experimentally determined optical absorption coefficient for these superlattices is compared WIth theoretical calculations. The absorption coefficient was determined from transmission and reflection spectra at 300, 77 and 5 K. Using the thickness and composition of the barriers and wells, and an interface width due to interdiffusion, the complex refractive index is calculated and compared with the experimental absorption coefficient. The envelope function method based on an 8 x 8 second order k . p band model was used to calculate the superlattice states. These results when inserted into Kubo's formula, yield the dynamic conductivity for interband transitions. The experimental and theoretical values for the absorption coefficient using no adjustable parameters are in good agreement for most of the investigated superlattices. Furthermore the agreement for the higher energetic interband transitions is much worse if values for the barrier composition, which are appreciably different than the experimentally determined values, are used. The infrared photoluminescence was investigated at temperatures from 4.2 to 300 K. Pronounced photoluminescence was observed for all superlattices in this temperature range.}, subject = {Physik}, language = {en} } @article{WuBeckerWaagetal.1993, author = {Wu, Y. S. and Becker, Charles R. and Waag, A. and Schmiedl, R. and Einfeldt, S. and Landwehr, G.}, title = {Oxygen on the (100) CdTe surface}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-37869}, year = {1993}, abstract = {We have investigated oxygen on CdTe substrates by means of x-ray photoelectron spectroscopy (XPS) and reflection high-energy electron diffraction (RHEED). A Te oxide layer that was at least 15 A thick was found on the surface of as-delivered CdTe substrates that were mechanically polished. This oxide is not easily evaporated at temperatures lower than 350°C. Furthermore, heating in air, which further oxidizes the CdTe layer, should be avoided. Etching with HCI acid (15\% HCl) for at least 20 s and then rinsing with de-ionized water reduces the Te oxide layer on the surface down to 4\% of a monoatomic layer. However, according to XPS measurements of the 0 Is peak, 20\%-30\% of a monoatomic layer of oxygen remains on the surface, which can be eliminated by heating at temperatures ranging between 300 and 340 cC. The RHEED patterns for a molecular beam epitaxially (MBE)-grown CdTe film on a (lOO) CdTe substrate with approximately one monoatomic layer of oxidized Te on the surface lose the characteristics of the normal RHEED pattems for a MBE-grown CdTe film on an oxygen-free CdTe substrate.}, language = {en} }