@article{ElHajjDittrichBoecketal.2016, author = {El Hajj, Nady and Dittrich, Marcus and B{\"o}ck, Julia and Kraus, Theo F. J. and Nanda, Indrajit and M{\"u}ller, Tobias and Seidmann, Larissa and Tralau, Tim and Galetzka, Danuta and Schneider, Eberhard and Haaf, Thomas}, title = {Epigenetic dysregulation in the developing Down syndrome cortex}, series = {Epigenetics}, volume = {11}, journal = {Epigenetics}, number = {8}, doi = {10.1080/15592294.2016.1192736}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-191239}, pages = {563-578}, year = {2016}, abstract = {Using Illumina 450K arrays, 1.85\% of all analyzed CpG sites were significantly hypermethylated and 0.31\% hypomethylated in fetal Down syndrome (DS) cortex throughout the genome. The methylation changes on chromosome 21 appeared to be balanced between hypo- and hyper-methylation, whereas, consistent with prior reports, all other chromosomes showed 3-11times more hyper- than hypo-methylated sites. Reduced NRSF/REST expression due to upregulation of DYRK1A (on chromosome 21q22.13) and methylation of REST binding sites during early developmental stages may contribute to this genome-wide excess of hypermethylated sites. Upregulation of DNMT3L (on chromosome 21q22.4) could lead to de novo methylation in neuroprogenitors, which then persists in the fetal DS brain where DNMT3A and DNMT3B become downregulated. The vast majority of differentially methylated promoters and genes was hypermethylated in DS and located outside chromosome 21, including the protocadherin gamma (PCDHG) cluster on chromosome 5q31, which is crucial for neural circuit formation in the developing brain. Bisulfite pyrosequencing and targeted RNA sequencing showed that several genes of PCDHG subfamilies A and B are hypermethylated and transcriptionally downregulated in fetal DS cortex. Decreased PCDHG expression is expected to reduce dendrite arborization and growth in cortical neurons. Since constitutive hypermethylation of PCDHG and other genes affects multiple tissues, including blood, it may provide useful biomarkers for DS brain development and pharmacologic targets for therapeutic interventions.}, language = {en} } @article{GaletzkaHansmannElHajjetal.2012, author = {Galetzka, Danuta and Hansmann, Tamara and El Hajj, Nady and Weis, Eva and Irmscher, Benjamin and Ludwig, Marco and Schneider-R{\"a}tzke, Brigitte and Kohlschmidt, Nicolai and Beyer, Vera and Bartsch, Oliver and Zechner, Ulrich and Spix, Claudia and Haaf, Thomas}, title = {Monozygotic twins discordant for constitutive BRCA1 promoter methylation, childhood cancer and secondary cancer}, series = {Epigenetics}, volume = {7}, journal = {Epigenetics}, number = {1}, doi = {10.4161/epi.7.1.18814}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-125386}, pages = {47-54}, year = {2012}, abstract = {We describe monozygotic twins discordant for childhood leukemia and secondary thyroid carcinoma. We used bisulfite pyrosequencing to compare the constitutive promoter methylation of BRCA1 and several other tumor suppressor genes in primary fibroblasts. The affected twin displayed an increased BRCA1 methylation (12\%), compared with her sister (3\%). Subsequent bisulfite plasmid sequencing demonstrated that 13\% (6 of 47) BRCA1 alleles were fully methylated in the affected twin, whereas her sister displayed only single CpG errors without functional implications. This between-twin methylation difference was also found in irradiated fibroblasts and untreated saliva cells. The BRCA1 epimutation may have originated by an early somatic event in the affected twin: approximately 25\% of her body cells derived from different embryonic cell lineages carry one epigenetically inactivated BRCA1 allele. This epimutation was associated with reduced basal protein levels and a higher induction of BRCA1 after DNA damage. In addition, we performed a genome-wide microarray analysis of both sisters and found several copy number variations, i.e., heterozygous deletion and reduced expression of the RSPO3 gene in the affected twin. This monozygotic twin pair represents an impressive example of epigenetic somatic mosaicism, suggesting a role for constitutive epimutations, maybe along with de novo genetic alterations in recurrent tumor development.}, language = {en} } @article{SchneiderDittrichBoecketal.2016, author = {Schneider, Eberhard and Dittrich, Marcus and B{\"o}ck, Julia and Nanda, Indrajit and M{\"u}ller, Tobias and Seidmann, Larissa and Tralau, Tim and Galetzka, Danuta and El Hajj, Nady and Haaf, Thomas}, title = {CpG sites with continuously increasing or decreasing methylation from early to late human fetal brain development}, series = {Gene}, volume = {592}, journal = {Gene}, number = {1}, doi = {10.1016/j.gene.2016.07.058}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-186936}, pages = {110-118}, year = {2016}, abstract = {Normal human brain development is dependent on highly dynamic epigenetic processes for spatial and temporal gene regulation. Recent work identified wide-spread changes in DNA methylation during fetal brain development. We profiled CpG methylation in frontal cortex of 27 fetuses from gestational weeks 12-42, using Illumina 450K methylation arrays. Sites showing genome-wide significant correlation with gestational age were compared to a publicly available data set from gestational weeks 3-26. Altogether, we identified 2016 matching developmentally regulated differentially methylated positions (m-dDMPs): 1767 m-dDMPs were hypermethylated and 1149 hypomethylated during fetal development. M-dDMPs are underrepresented in CpG islands and gene promoters, and enriched in gene bodies. They appear to cluster in certain chromosome regions. M-dDMPs are significantly enriched in autism-associated genes and CpGs. Our results promote the idea that reduced methylation dynamics during fetal brain development may predispose to autism. In addition, m-dDMPs are enriched in genes with human-specific brain expression patterns and/or histone modifications. Collectively, we defined a subset of dDMPs exhibiting constant methylation changes from early to late pregnancy. The same epigenetic mechanisms involving methylation changes in cis-regulatory regions may have been adopted for human brain evolution and ontogeny.}, language = {en} } @article{SchneiderPliushchElHajjetal.2010, author = {Schneider, Eberhard and Pliushch, Galyna and El Hajj, Nady and Galetzka, Danuta and Puhl, Alexander and Schorsch, Martin and Frauenknecht, Katrin and Riepert, Thomas and Tresch, Achim and Mueller, Annette M. and Coerdt, Wiltrud and Zechner, Ulrich and Haaf, Thomas}, title = {Spatial, temporal and interindividual epigenetic variation of functionally important DNA methylation patterns}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-68371}, year = {2010}, abstract = {DNA methylation is an epigenetic modification that plays an important role in gene regulation. It can be influenced by stochastic events, environmental factors and developmental programs. However, little is known about the natural variation of genespecific methylation patterns. In this study, we performed quantitative methylation analyses of six differentially methylated imprinted genes (H19, MEG3, LIT1, NESP55, PEG3 and SNRPN), one hypermethylated pluripotency gene (OCT4) and one hypomethylated tumor suppressor gene (APC) in chorionic villus, fetal and adult cortex, and adult blood samples. Both average methylation level and range of methylation variation depended on the gene locus, tissue type and/or developmental stage. We found considerable variability of functionally important methylation patterns among unrelated healthy individuals and a trend toward more similar methylation levels in monozygotic twins than in dizygotic twins. Imprinted genes showed relatively little methylation changes associated with aging in individuals who are >25 years. The relative differences in methylation among neighboring CpGs in the generally hypomethylated APC promoter may not only reflect stochastic fluctuations but also depend on the tissue type. Our results are consistent with the view that most methylation variation may arise after fertilization, leading to epigenetic mosaicism.}, subject = {Medizin}, language = {en} }