@article{WernerWakabayashiBaueretal.2018, author = {Werner, Rudolf and Wakabayashi, Hiroshi and Bauer, Jochen and Sch{\"u}tz, Claudia and Zechmeister, Christina and Hayakawa, Nobuyuki and Javadi, Mehrbod S. and Lapa, Constantin and Jahns, Roland and Erg{\"u}n, S{\"u}leyman and Jahns, Valerie and Higuchi, Takahiro}, title = {Longitudinal \(^{18}\)F-FDG PET imaging in a Rat Model of Autoimmune Myocarditis}, series = {European Heart Journal Cardiovascular Imaging}, journal = {European Heart Journal Cardiovascular Imaging}, issn = {2047-2404}, doi = {10.1093/ehjci/jey119}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-165601}, pages = {1-8}, year = {2018}, abstract = {Aims: Although mortality rate is very high, diagnosis of acute myocarditis remains challenging with conventional tests. We aimed to elucidate the potential role of longitudinal 2-Deoxy-2-\(^{18}\)F-fluoro-D-glucose (\(^{18}\)F-FDG) positron emission tomography (PET) inflammation monitoring in a rat model of experimental autoimmune myocarditis. Methods and results: Autoimmune myocarditis was induced in Lewis rats by immunizing with porcine cardiac myosin emulsified in complete Freund's adjuvant. Time course of disease was assessed by longitudinal \(^{18}\)F-FDG PET imaging. A correlative analysis between in- and ex vivo \(^{18}\)F-FDG signalling and macrophage infiltration using CD68 staining was conducted. Finally, immunohistochemistry analysis of the cell-adhesion markers CD34 and CD44 was performed at different disease stages determined by longitudinal \(^{18}\)F-FDG PET imaging. After immunization, myocarditis rats revealed a temporal increase in 18F-FDG uptake (peaked at week 3), which was followed by a rapid decline thereafter. Localization of CD68 positive cells was well correlated with in vivo \(^{18}\)F-FDG PET signalling (R\(^2\) = 0.92) as well as with ex vivo 18F-FDG autoradiography (R\(^2\) = 0.9, P < 0.001, respectively). CD44 positivity was primarily observed at tissue samples obtained at acute phase (i.e. at peak 18F-FDG uptake), while CD34-positive staining areas were predominantly identified in samples harvested at both sub-acute and chronic phases (i.e. at \(^{18}\)F-FDG decrease). Conclusion: \(^{18}\)F-FDG PET imaging can provide non-invasive serial monitoring of cardiac inflammation in a rat model of acute myocarditis.}, subject = {Myokarditis}, language = {en} } @article{RossowVeitlVorlovaetal.2018, author = {Rossow, Leonie and Veitl, Simona and Vorlov{\´a}, Sandra and Wax, Jacqueline K. and Kuhn, Anja E. and Maltzahn, Verena and Upcin, Berin and Karl, Franziska and Hoffmann, Helene and G{\"a}tzner, Sabine and Kallius, Matthias and Nandigama, Rajender and Scheld, Daniela and Irmak, Ster and Herterich, Sabine and Zernecke, Alma and Erg{\"u}n, S{\"u}leyman and Henke, Erik}, title = {LOX-catalyzed collagen stabilization is a proximal cause for intrinsic resistance to chemotherapy}, series = {Oncogene}, volume = {37}, journal = {Oncogene}, doi = {10.1038/s41388-018-0320-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-227008}, pages = {4921-4940}, year = {2018}, abstract = {The potential of altering the tumor ECM to improve drug response remains fairly unexplored. To identify targets for modification of the ECM aiming to improve drug response and overcome resistance, we analyzed expression data sets from pre-treatment patient cohorts. Cross-evaluation identified a subset of chemoresistant tumors characterized by increased expression of collagens and collagen-stabilizing enzymes. We demonstrate that strong collagen expression and stabilization sets off a vicious circle of self-propagating hypoxia, malignant signaling, and aberrant angiogenesis that can be broken by an appropriate auxiliary intervention: Interfering with collagen stabilization by inhibition of lysyl oxidases significantly enhanced response to chemotherapy in various tumor models, even in metastatic disease. Inhibition of collagen stabilization by itself can reduce or enhance tumor growth depending on the tumor type. The mechanistical basis for this behavior is the dependence of the individual tumor on nutritional supply on one hand and on high tissue stiffness for FAK signaling on the other.}, language = {en} } @article{KwokUedaKadarietal.2018, author = {Kwok, Chee Keong and Ueda, Yuichiro and Kadari, Asifiqbal and G{\"u}nther, Katharina and Erg{\"u}n, S{\"u}leyman and Heron, Antoine and Schnitzler, Aletta C. and Rook, Martha and Edenhofer, Frank}, title = {Scalable stirred suspension culture for the generation of billions of human induced pluripotent stem cells using single-use bioreactors}, series = {Journal of Tissue Engineering and Regenerative Medicine}, volume = {12}, journal = {Journal of Tissue Engineering and Regenerative Medicine}, doi = {10.1002/term.2435}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-234545}, pages = {e1076-e1087}, year = {2018}, abstract = {The production of human induced pluripotent stem cells (hiPSCs) in quantities that are relevant for cell-based therapies and cell-loaded implants through standard adherent culture is hardly achievable and lacks process scalability. A promising approach to overcoming these hurdles is the culture of hiPSCs in suspension. In this study, stirred suspension culture vessels were investigated for their suitability in the expansion of two hiPSC lines inoculated as a single cell suspension, with a free scalability between volumes of 50 and 2400 ml. The simple and robust two-step process reported here first generates hiPSC aggregates of 324 ± 71 μm diameter in 7 days in 125 ml spinner flasks (100 ml volume). These are subsequently dissociated into a single cell suspension for inoculation in 3000 ml bioreactors (1000 ml volume), finally yielding hiPSC aggregates of 198 ± 58 μm after 7 additional days. In both spinner flasks and bioreactors, hiPSCs can be cultured as aggregates for more than 40 days in suspension, maintain an undifferentiated state as confirmed by the expression of pluripotency markers TRA-1-60, TRA-1-81, SSEA-4, OCT4, and SOX2, can differentiate into cells of all three germ layers, and can be directed to differentiate into specific lineages such as cardiomyocytes. Up to a 16-fold increase in hiPSC quantity at the 100 ml volume was achieved, corresponding to a fold increase per day of 2.28; at the 1000 ml scale, an additional 10-fold increase was achieved. Taken together, 16 × 106 hiPSCs were expanded into 2 × 109 hiPSCs in 14 days for a fold increase per day of 8.93. This quantity of hiPSCs readily meets the requirements of cell-based therapies and brings their clinical potential closer to fruition.}, language = {en} }