@article{SalvadorKesslerDomroeseetal.2022, author = {Salvador, Ellaine and Kessler, Almuth F. and Domr{\"o}se, Dominik and H{\"o}rmann, Julia and Schaeffer, Clara and Giniunaite, Aiste and Burek, Malgorzata and Tempel-Brami, Catherine and Voloshin, Tali and Volodin, Alexandra and Zeidan, Adel and Giladi, Moshe and Ernestus, Ralf-Ingo and L{\"o}hr, Mario and F{\"o}rster, Carola Y. and Hagemann, Carsten}, title = {Tumor Treating Fields (TTFields) reversibly permeabilize the blood-brain barrier in vitro and in vivo}, series = {Biomolecules}, volume = {12}, journal = {Biomolecules}, number = {10}, issn = {2218-273X}, doi = {10.3390/biom12101348}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-288057}, year = {2022}, abstract = {Despite the availability of numerous therapeutic substances that could potentially target CNS disorders, an inability of these agents to cross the restrictive blood-brain barrier (BBB) limits their clinical utility. Novel strategies to overcome the BBB are therefore needed to improve drug delivery. We report, for the first time, how Tumor Treating Fields (TTFields), approved for glioblastoma (GBM), affect the BBB's integrity and permeability. Here, we treated murine microvascular cerebellar endothelial cells (cerebEND) with 100-300 kHz TTFields for up to 72 h and analyzed the expression of barrier proteins by immunofluorescence staining and Western blot. In vivo, compounds normally unable to cross the BBB were traced in healthy rat brain following TTFields administration at 100 kHz. The effects were analyzed via MRI and immunohistochemical staining of tight-junction proteins. Furthermore, GBM tumor-bearing rats were treated with paclitaxel (PTX), a chemotherapeutic normally restricted by the BBB combined with TTFields at 100 kHz. The tumor volume was reduced with TTFields plus PTX, relative to either treatment alone. In vitro, we demonstrate that TTFields transiently disrupted BBB function at 100 kHz through a Rho kinase-mediated tight junction claudin-5 phosphorylation pathway. Altogether, if translated into clinical use, TTFields could represent a novel CNS drug delivery strategy.}, language = {en} } @article{ReschkeSalvadorSchlegeletal.2022, author = {Reschke, Moritz and Salvador, Ellaine and Schlegel, Nicolas and Burek, Malgorzata and Karnati, Srikanth and Wunder, Christian and F{\"o}rster, Carola Y.}, title = {Isosteviol sodium (STVNA) reduces pro-inflammatory cytokine IL-6 and GM-CSF in an in vitro murine stroke model of the blood-brain barrier (BBB)}, series = {Pharmaceutics}, volume = {14}, journal = {Pharmaceutics}, number = {9}, issn = {1999-4923}, doi = {10.3390/pharmaceutics14091753}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-286275}, year = {2022}, abstract = {Early treatment with glucocorticoids could help reduce both cytotoxic and vasogenic edema, leading to improved clinical outcome after stroke. In our previous study, isosteviol sodium (STVNA) demonstrated neuroprotective effects in an in vitro stroke model, which utilizes oxygen-glucose deprivation (OGD). Herein, we tested the hypothesis that STVNA can activate glucocorticoid receptor (GR) transcriptional activity in brain microvascular endothelial cells (BMECs) as previously published for T cells. STVNA exhibited no effects on transcriptional activation of the glucocorticoid receptor, contrary to previous reports in Jurkat cells. However, similar to dexamethasone, STVNA inhibited inflammatory marker IL-6 as well as granulocyte-macrophage colony-stimulating factor (GM-CSF) secretion. Based on these results, STVNA proves to be beneficial as a possible prevention and treatment modality for brain ischemia-reperfusion injury-induced blood-brain barrier (BBB) dysfunction.}, language = {en} }