@article{ReschkeSalvadorSchlegeletal.2022, author = {Reschke, Moritz and Salvador, Ellaine and Schlegel, Nicolas and Burek, Malgorzata and Karnati, Srikanth and Wunder, Christian and F{\"o}rster, Carola Y.}, title = {Isosteviol sodium (STVNA) reduces pro-inflammatory cytokine IL-6 and GM-CSF in an in vitro murine stroke model of the blood-brain barrier (BBB)}, series = {Pharmaceutics}, volume = {14}, journal = {Pharmaceutics}, number = {9}, issn = {1999-4923}, doi = {10.3390/pharmaceutics14091753}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-286275}, year = {2022}, abstract = {Early treatment with glucocorticoids could help reduce both cytotoxic and vasogenic edema, leading to improved clinical outcome after stroke. In our previous study, isosteviol sodium (STVNA) demonstrated neuroprotective effects in an in vitro stroke model, which utilizes oxygen-glucose deprivation (OGD). Herein, we tested the hypothesis that STVNA can activate glucocorticoid receptor (GR) transcriptional activity in brain microvascular endothelial cells (BMECs) as previously published for T cells. STVNA exhibited no effects on transcriptional activation of the glucocorticoid receptor, contrary to previous reports in Jurkat cells. However, similar to dexamethasone, STVNA inhibited inflammatory marker IL-6 as well as granulocyte-macrophage colony-stimulating factor (GM-CSF) secretion. Based on these results, STVNA proves to be beneficial as a possible prevention and treatment modality for brain ischemia-reperfusion injury-induced blood-brain barrier (BBB) dysfunction.}, language = {en} } @article{SalvadorBurekLoehretal.2021, author = {Salvador, Ellaine and Burek, Malgorzata and L{\"o}hr, Mario and Nagai, Michiaki and Hagemann, Carsten and F{\"o}rster, Carola Y.}, title = {Senescence and associated blood-brain barrier alterations in vitro}, series = {Histochemistry and Cell Biology}, volume = {156}, journal = {Histochemistry and Cell Biology}, number = {3}, issn = {1432-119X}, doi = {10.1007/s00418-021-01992-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-267435}, pages = {283-292}, year = {2021}, abstract = {Progressive deterioration of the central nervous system (CNS) is commonly associated with aging. An important component of the neurovasculature is the blood-brain barrier (BBB), majorly made up of endothelial cells joined together by intercellular junctions. The relationship between senescence and changes in the BBB has not yet been thoroughly explored. Moreover, the lack of in vitro models for the study of the mechanisms involved in those changes impede further and more in-depth investigations in the field. For this reason, we herein present an in vitro model of the senescent BBB and an initial attempt to identify senescence-associated alterations within.}, language = {en} } @article{GriemertSchwarzmaierHummeletal.2019, author = {Griemert, Eva-Verena and Schwarzmaier, Susanne M. and Hummel, Regina and G{\"o}lz, Christina and Yang, Dong and Neuhaus, Winfried and Burek, Malgorzata and F{\"o}rster, Carola Y. and Petkovic, Ivan and Trabold, Raimund and Plesnila, Nikolaus and Engelhard, Kristin and Sch{\"a}fer, Michael K. and Thal, Serge C.}, title = {Plasminogen activator inhibitor-1 augments damage by impairing fibrinolysis after traumatic brain injury}, series = {Annals of Neurology}, volume = {85}, journal = {Annals of Neurology}, doi = {10.1002/ana.25458}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-228682}, pages = {667-680}, year = {2019}, abstract = {Objective Plasminogen activator inhibitor-1 (PAI-1) is the key endogenous inhibitor of fibrinolysis, and enhances clot formation after injury. In traumatic brain injury, dysregulation of fibrinolysis may lead to sustained microthrombosis and accelerated lesion expansion. In the present study, we hypothesized that PAI-1 mediates post-traumatic malfunction of coagulation, with inhibition or genetic depletion of PAI-1 attenuating clot formation and lesion expansion after brain trauma. Methods We evaluated PAI-1 as a possible new target in a mouse controlled cortical impact (CCI) model of traumatic brain injury. We performed the pharmacological inhibition of PAI-1 with PAI-039 and stimulation by tranexamic acid, and we confirmed our results in PAI-1-deficient animals. Results PAI-1 mRNA was time-dependently upregulated, with a 305-fold peak 12 hours after CCI, which effectively counteracted the 2- to 3-fold increase in cerebral tissue-type/urokinase plasminogen activator expression. PAI-039 reduced brain lesion volume by 26\% at 24 hours and 43\% at 5 days after insult. This treatment also attenuated neuronal apoptosis and improved neurofunctional outcome. Moreover, intravital microscopy demonstrated reduced post-traumatic thrombus formation in the pericontusional cortical microvasculature. In PAI-1-deficient mice, the therapeutic effect of PAI-039 was absent. These mice also displayed 13\% reduced brain damage compared with wild type. In contrast, inhibition of fibrinolysis with tranexamic acid increased lesion volume by 25\% compared with vehicle. Interpretation This study identifies impaired fibrinolysis as a critical process in post-traumatic secondary brain damage and suggests that PAI-1 may be a central endogenous inhibitor of the fibrinolytic pathway, promoting a procoagulatory state and clot formation in the cerebral microvasculature. Ann Neurol 2019;85:667-680}, language = {en} }