@article{AnkenbrandWeberBeckeretal.2016, author = {Ankenbrand, Markus J. and Weber, Lorenz and Becker, Dirk and F{\"o}rster, Frank and Bemm, Felix}, title = {TBro: visualization and management of de novo transcriptomes}, series = {Database}, volume = {2016}, journal = {Database}, doi = {10.1093/database/baw146}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-147954}, pages = {baw146}, year = {2016}, abstract = {RNA sequencing (RNA-seq) has become a powerful tool to understand molecular mechanisms and/or developmental programs. It provides a fast, reliable and cost-effective method to access sets of expressed elements in a qualitative and quantitative manner. Especially for non-model organisms and in absence of a reference genome, RNA-seq data is used to reconstruct and quantify transcriptomes at the same time. Even SNPs, InDels, and alternative splicing events are predicted directly from the data without having a reference genome at hand. A key challenge, especially for non-computational personnal, is the management of the resulting datasets, consisting of different data types and formats. Here, we present TBro, a flexible de novo transcriptome browser, tackling this challenge. TBro aggregates sequences, their annotation, expression levels as well as differential testing results. It provides an easy-to-use interface to mine the aggregated data and generate publication-ready visualizations. Additionally, it supports users with an intuitive cart system, that helps collecting and analysing biological meaningful sets of transcripts. TBro's modular architecture allows easy extension of its functionalities in the future. Especially, the integration of new data types such as proteomic quantifications or array-based gene expression data is straightforward. Thus, TBro is a fully featured yet flexible transcriptome browser that supports approaching complex biological questions and enhances collaboration of numerous researchers.}, language = {en} } @article{BuchheimKellerKoetschanetal.2011, author = {Buchheim, Mark A. and Keller, Alexander and Koetschan, Christian and F{\"o}rster, Frank and Merget, Benjamin and Wolf, Matthias}, title = {Internal Transcribed Spacer 2 (nu ITS2 rRNA) Sequence-Structure Phylogenetics: Towards an Automated Reconstruction of the Green Algal Tree of Life}, series = {PLoS ONE}, volume = {6}, journal = {PLoS ONE}, number = {2}, doi = {10.1371/journal.pone.0016931}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-140866}, pages = {e16931}, year = {2011}, abstract = {Background: Chloroplast-encoded genes (matK and rbcL) have been formally proposed for use in DNA barcoding efforts targeting embryophytes. Extending such a protocol to chlorophytan green algae, though, is fraught with problems including non homology (matK) and heterogeneity that prevents the creation of a universal PCR toolkit (rbcL). Some have advocated the use of the nuclear-encoded, internal transcribed spacer two (ITS2) as an alternative to the traditional chloroplast markers. However, the ITS2 is broadly perceived to be insufficiently conserved or to be confounded by introgression or biparental inheritance patterns, precluding its broad use in phylogenetic reconstruction or as a DNA barcode. A growing body of evidence has shown that simultaneous analysis of nucleotide data with secondary structure information can overcome at least some of the limitations of ITS2. The goal of this investigation was to assess the feasibility of an automated, sequence-structure approach for analysis of IT2 data from a large sampling of phylum Chlorophyta. Methodology/Principal Findings: Sequences and secondary structures from 591 chlorophycean, 741 trebouxiophycean and 938 ulvophycean algae, all obtained from the ITS2 Database, were aligned using a sequence structure-specific scoring matrix. Phylogenetic relationships were reconstructed by Profile Neighbor-Joining coupled with a sequence structure-specific, general time reversible substitution model. Results from analyses of the ITS2 data were robust at multiple nodes and showed considerable congruence with results from published phylogenetic analyses. Conclusions/Significance: Our observations on the power of automated, sequence-structure analyses of ITS2 to reconstruct phylum-level phylogenies of the green algae validate this approach to assessing diversity for large sets of chlorophytan taxa. Moreover, our results indicate that objections to the use of ITS2 for DNA barcoding should be weighed against the utility of an automated, data analysis approach with demonstrated power to reconstruct evolutionary patterns for highly divergent lineages.}, language = {en} } @phdthesis{Forster2007, author = {Forster, Frank}, title = {Eigenschaften und Modifikation zweidimensionaler Elektronenzust{\"a}nde auf Edelmetallen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-23460}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2007}, abstract = {Im Rahmen dieser Arbeit werden Untersuchungen an zweidimensionalen elektronischen Strukturen von (111)-orientierten Edelmetalloberfl{\"a}chen und deren Beeinflussung durch verschiedene Adsorbate pr{\"a}sentiert. Das Hauptaugenmerk liegt hierbei auf den an Oberfl{\"a}chen lokalisierten Shockley-Zust{\"a}nden von Cu, Ag und Au, deren Banddispersion (Bindungsenergie, Bandmasse und Spin-Bahn-Aufspaltung) sich als sensible Sonde f{\"u}r Oberfl{\"a}chenmodifikationen durch Adsorptionprozesse herausstellt. Winkelaufgel{\"o}ste Photoelektronenspektroskopie erlaubt hierbei den experimentellen Zugang zu bereits feinen Ver{\"a}nderungen der elektronischen Bandstruktur dieser zweidimensionalen Systeme. Verschiedene Mechanismen, die sich an Oberfl{\"a}chen und Adsorbat/Substrat-Grenzfl{\"a}chen abspielen wirken sich in unterschiedlicher Weise auf den Shockley-Zustand aus und werden anhand von geeigneten Modelladsorbatsystemen untersucht. Die experimentellen Ergebnisse werden mit geeigneten Modellen, wie dem Phasenakkumulationsmodell und dem Modell fast freier Elektronen, und teilweise mit ab initio-Rechnungen gem{\"a}ß der Dichtefunktionaltheorie verglichen, was eine Einbettung der Resultate in einen gemeinsamen Kontext erlaubt. So wird der Einfluss der Adsorption von Submonolagen von Na auf den Au-Oberfl{\"a}chenzustand im Hinblick auf die signifikante Austrittsarbeits{\"a}nderung der Oberfl{\"a}che untersucht. Eine systematische Studie der Physisorption von Edelgasen zeigt die Auswirkung der repulsiven Wechselwirkung von Adsorbat und Substrat auf die Elektronen im Oberfl{\"a}chenzustandsband. Eine schrittweise Bedeckung der Oberfl{\"a}che von Cu und Au(111) mit Ag-Monolagen bedingt eine graduelle Ver{\"a}nderung des Oberfl{\"a}chenpotenzials und verursacht einen zunehmende Ag-Charakter des Shockley-Zustands. F{\"u}r N \&\#8805; 7 ML dicke, lagenweise wachsende Ag-Schichten auf Au(111) werden im Experiment neue zweidimensionale elektronische Strukturen beobachtet, die den Quantentrogzust{\"a}nden des Ag-Films zugeordnet werden. Inwiefern sie innerhalb der Ag-Schicht lokalisiert sind oder sich noch zu einem wesentlichen Anteil im Substrat befinden, zeigt die Untersuchung ihrer energetischen und r{\"a}umlichen Evolution mit der Ag-Schichtdicke N. Dazu wurden neben der Bindungsenergie auch die Photoemissionsintensit{\"a}t der Quantentrogzust{\"a}nde vermessen, die Aussagen {\"u}ber die Lokalisierung erlauben, welche mit Ergebnissen aus Dichtefunktionalrechnungen verglichen werden. Schließlich wird anhand der Xe-Adsorption auf unterschiedlich dicken Ag-Filmen auf Cu und Au(111) gezeigt, dass der Oberfl{\"a}chenzustand nicht nur als Sonde f{\"u}r Adsorptionsmechanismen dient, sondern selbst das Adsorptionsverhalten maßgeblich mitbestimmt. Ein Erkl{\"a}rungsmodell wird vorgestellt, welches neben der durch die Bandstruktur bestimmte Zustandsdichte auch die Lokalisierung der Ladungsdichte an der Oberfl{\"a}che ber{\"u}cksichtigt, um ein Maß f{\"u}r die St{\"a}rke der repulsiven Wechselwirkung zu beschreiben, die Edelgasadsorbate auf den Oberfl{\"a}chen erfahren.}, language = {de} } @phdthesis{Foerster2010, author = {F{\"o}rster, Frank}, title = {Making the most of phylogeny: Unique adaptations in tardigrades and 216374 internal transcribed spacer 2 structures}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-51466}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {The phylum Tardigrada consists of about 1000 described species to date. The animals live in habitats within marine, freshwater and terrestrial ecosystems allover the world. Tardigrades are polyextremophiles. They are capable to resist extreme temperature, pressure or radiation. In the event of desiccation, tardigrades enter a so-called tun stage. The reason for their great tolerance capabilities against extreme environmental conditions is not discovered yet. Our Funcrypta project aims at finding answers to the question what mechanisms underlie these adaption capabilities particularly with regard to the species Milnesium tardigradum. The first part of this thesis describes the establishment of expressed sequence tags (ESTs) libraries for different stages of M. tardigradum. From proteomics data we bioinformatically identified 144 proteins with a known function and additionally 36 proteins which seemed to be specific for M. tardigradum. The generation of a comprehensive web-based database allows us to merge the proteome and transcriptome data. Therefore we created an annotation pipeline for the functional annotation of the protein and nucleotide sequences. Additionally, we clustered the obtained proteome dataset and identified some tardigrade-specific proteins (TSPs) which did not show homology to known proteins. Moreover, we examined the heat shock proteins of M. tardigradum and their different expression levels depending on the actual state of the animals. In further bioinformatical analyses of the whole data set, we discovered promising proteins and pathways which are described to be correlated with the stress tolerance, e.g. late embryogenesis abundant (LEA) proteins. Besides, we compared the tardigrades with nematodes, rotifers, yeast and man to identify shared and tardigrade specific stress pathways. An analysis of the 50 and 30 untranslated regions (UTRs) demonstrates a strong usage of stabilising motifs like the 15-lipoxygenase differentiation control element (15-LOX-DICE) but also reveals a lack of other common UTR motifs normally used, e.g. AU rich elements. The second part of this thesis focuses on the relatedness between several cryptic species within the tardigrade genus Paramacrobiotus. Therefore for the first time, we used the sequence-structure information of the internal transcribed spacer 2 (ITS2) as a phylogenetic marker in tardigrades. This allowed the description of three new species which were indistinguishable using morphological characters or common molecular markers like the 18S ribosomal ribonucleic acid (rRNA) or the Cytochrome c oxidase subunit I (COI). In a large in silico simulation study we also succeeded to show the benefit for the phylogenetic tree reconstruction by adding structure information to the ITS2 sequence. Next to the genus Paramacrobiotus we used the ITS2 to corroborate a monophyletic DO-group (Sphaeropleales) within the Chlorophyceae. Additionally we redesigned another comprehensive database—the ITS2 database resulting in a doubled number of sequence-structure pairs of the ITS2. In conclusion, this thesis shows the first insights (6 first author publications and 4 coauthor publications) into the reasons for the enormous adaption capabilities of tardigrades and offers a solution to the debate on the phylogenetic relatedness within the tardigrade genus Paramacrobiotus.}, subject = {Phylogenie}, language = {en} } @article{FoersterBeisserGrohmeetal.2012, author = {F{\"o}rster, Frank and Beisser, Daniela and Grohme, Markus A. and Liang, Chunguang and Mali, Brahim and Siegl, Alexander Matthias and Engelmann, Julia C. and Shkumatov, Alexander V. and Schokraie, Elham and M{\"u}ller, Tobias and Schn{\"o}lzer, Martina and Schill, Ralph O. and Frohme, Marcus and Dandekar, Thomas}, title = {Transcriptome analysis in tardigrade species reveals specific molecular pathways for stress adaptations}, series = {Bioinformatics and biology insights}, volume = {6}, journal = {Bioinformatics and biology insights}, doi = {10.4137/BBI.S9150}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-123089}, pages = {69-96}, year = {2012}, abstract = {Tardigrades have unique stress-adaptations that allow them to survive extremes of cold, heat, radiation and vacuum. To study this, encoded protein clusters and pathways from an ongoing transcriptome study on the tardigrade \(Milnesium\) \(tardigradum\) were analyzed using bioinformatics tools and compared to expressed sequence tags (ESTs) from \(Hypsibius\) \(dujardini\), revealing major pathways involved in resistance against extreme environmental conditions. ESTs are available on the Tardigrade Workbench along with software and databank updates. Our analysis reveals that RNA stability motifs for \(M.\) \(tardigradum\) are different from typical motifs known from higher animals. \(M.\) \(tardigradum\) and \(H.\) \(dujardini\) protein clusters and conserved domains imply metabolic storage pathways for glycogen, glycolipids and specific secondary metabolism as well as stress response pathways (including heat shock proteins, bmh2, and specific repair pathways). Redox-, DNA-, stress- and protein protection pathways complement specific repair capabilities to achieve the strong robustness of \(M.\) \(tardigradum\). These pathways are partly conserved in other animals and their manipulation could boost stress adaptation even in human cells. However, the unique combination of resistance and repair pathways make tardigrades and \(M.\) \(tardigradum\) in particular so highly stress resistant.}, language = {en} } @article{GuptaKupperRatzkaetal.2015, author = {Gupta, Shishir K. and Kupper, Maria and Ratzka, Carolin and Feldhaar, Heike and Vilcinskas, Andreas and Gross, Roy and Dandekar, Thomas and F{\"o}rster, Frank}, title = {Scrutinizing the immune defence inventory of Camponotus floridanus applying total transcriptome sequencing}, series = {BMC Genomics}, volume = {16}, journal = {BMC Genomics}, number = {540}, doi = {10.1186/s12864-015-1748-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-125279}, year = {2015}, abstract = {Background Defence mechanisms of organisms are shaped by their lifestyle, environment and pathogen pressure. Carpenter ants are social insects which live in huge colonies comprising genetically closely related individuals in high densities within nests. This lifestyle potentially facilitates the rapid spread of pathogens between individuals. In concert with their innate immune system, social insects may apply external immune defences to manipulate the microbial community among individuals and within nests. Additionally, carpenter ants carry a mutualistic intracellular and obligate endosymbiotic bacterium, possibly maintained and regulated by the innate immune system. Thus, different selective forces could shape internal immune defences of Camponotus floridanus. Results The immune gene repertoire of C. floridanus was investigated by re-evaluating its genome sequence combined with a full transcriptome analysis of immune challenged and control animals using Illumina sequencing. The genome was re-annotated by mapping transcriptome reads and masking repeats. A total of 978 protein sequences were characterised further by annotating functional domains, leading to a change in their original annotation regarding function and domain composition in about 8 \% of all proteins. Based on homology analysis with key components of major immune pathways of insects, the C. floridanus immune-related genes were compared to those of Drosophila melanogaster, Apis mellifera, and other hymenoptera. This analysis revealed that overall the immune system of carpenter ants comprises many components found in these insects. In addition, several C. floridanus specific genes of yet unknown functions but which are strongly induced after immune challenge were discovered. In contrast to solitary insects like Drosophila or the hymenopteran Nasonia vitripennis, the number of genes encoding pattern recognition receptors specific for bacterial peptidoglycan (PGN) and a variety of known antimicrobial peptide (AMP) genes is lower in C. floridanus. The comparative analysis of gene expression post immune-challenge in different developmental stages of C. floridanus suggests a stronger induction of immune gene expression in larvae in comparison to adults. Conclusions The comparison of the immune system of C. floridanus with that of other insects revealed the presence of a broad immune repertoire. However, the relatively low number of PGN recognition proteins and AMPs, the identification of Camponotus specific putative immune genes, and stage specific differences in immune gene regulation reflects Camponotus specific evolution including adaptations to its lifestyle.}, language = {en} } @article{KruegerFriedrichFoersteretal.2012, author = {Krueger, Beate and Friedrich, Torben and F{\"o}rster, Frank and Bernhardt, J{\"o}rg and Gross, Roy and Dandekar, Thomas}, title = {Different evolutionary modifications as a guide to rewire two-component systems}, series = {Bioinformatics and Biology Insights}, volume = {6}, journal = {Bioinformatics and Biology Insights}, doi = {10.4137/BBI.S9356}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-123647}, pages = {97-128}, year = {2012}, abstract = {Two-component systems (TCS) are short signalling pathways generally occurring in prokaryotes. They frequently regulate prokaryotic stimulus responses and thus are also of interest for engineering in biotechnology and synthetic biology. The aim of this study is to better understand and describe rewiring of TCS while investigating different evolutionary scenarios. Based on large-scale screens of TCS in different organisms, this study gives detailed data, concrete alignments, and structure analysis on three general modification scenarios, where TCS were rewired for new responses and functions: (i) exchanges in the sequence within single TCS domains, (ii) exchange of whole TCS domains; (iii) addition of new components modulating TCS function. As a result, the replacement of stimulus and promotor cassettes to rewire TCS is well defined exploiting the alignments given here. The diverged TCS examples are non-trivial and the design is challenging. Designed connector proteins may also be useful to modify TCS in selected cases.}, language = {en} } @article{MergetKoetschanHackletal.2012, author = {Merget, Benjamin and Koetschan, Christian and Hackl, Thomas and F{\"o}rster, Frank and Dandekar, Thomas and M{\"u}ller, Tobias and Schultz, J{\"o}rg and Wolf, Matthias}, title = {The ITS2 Database}, series = {Journal of Visual Expression}, volume = {61}, journal = {Journal of Visual Expression}, number = {e3806}, doi = {10.3791/3806}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-124600}, year = {2012}, abstract = {The internal transcribed spacer 2 (ITS2) has been used as a phylogenetic marker for more than two decades. As ITS2 research mainly focused on the very variable ITS2 sequence, it confined this marker to low-level phylogenetics only. However, the combination of the ITS2 sequence and its highly conserved secondary structure improves the phylogenetic resolution1 and allows phylogenetic inference at multiple taxonomic ranks, including species delimitation. The ITS2 Database presents an exhaustive dataset of internal transcribed spacer 2 sequences from NCBI GenBank accurately reannotated. Following an annotation by profile Hidden Markov Models (HMMs), the secondary structure of each sequence is predicted. First, it is tested whether a minimum energy based fold (direct fold) results in a correct, four helix conformation. If this is not the case, the structure is predicted by homology modeling. In homology modeling, an already known secondary structure is transferred to another ITS2 sequence, whose secondary structure was not able to fold correctly in a direct fold. The ITS2 Database is not only a database for storage and retrieval of ITS2 sequence-structures. It also provides several tools to process your own ITS2 sequences, including annotation, structural prediction, motif detection and BLAST search on the combined sequence-structure information. Moreover, it integrates trimmed versions of 4SALE and ProfDistS for multiple sequence-structure alignment calculation and Neighbor Joining tree reconstruction. Together they form a coherent analysis pipeline from an initial set of sequences to a phylogeny based on sequence and secondary structure. In a nutshell, this workbench simplifies first phylogenetic analyses to only a few mouse-clicks, while additionally providing tools and data for comprehensive large-scale analyses.}, language = {en} } @article{RatzkaFoersterLiangetal.2012, author = {Ratzka, Carolin and F{\"o}rster, Frank and Liang, Chunguang and Kupper, Maria and Dandekar, Thomas and Feldhaar, Heike and Gross, Roy}, title = {Molecular characterization of antimicrobial peptide genes of the carpenter ant Camponotus floridanus}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-75985}, year = {2012}, abstract = {The production of antimicrobial peptides (AMPs) is a major defense mechanism against pathogen infestation and of particular importance for insects relying exclusively on an innate immune system. Here, we report on the characterization of three AMPs from the carpenter ant Camponotus floridanus. Due to sequence similarities and amino acid composition these peptides can be classified into the cysteine-rich (e.g. defensin) and glycine-rich (e.g. hymenoptaecin) AMP groups, respectively. The gene and cDNA sequences of these AMPs were established and their expression was shown to be induced by microbial challenge. We characterized two different defensin genes. The defensin-2 gene has a single intron, whereas the defensin-1 gene has two introns. The deduced amino acid sequence of the C. floridanus defensins is very similar to other known ant defensins with the exception of a short C-terminal extension of defensin-1. The hymenoptaecin gene has a single intron and a very peculiar domain structure. The corresponding precursor protein consists of a signal- and a pro-sequence followed by a hymenoptaecin-like domain and six directly repeated hymenoptaecin domains. Each of the hymenoptaecin domains is flanked by an EAEP-spacer sequence and a RR-site known to be a proteolytic processing site. Thus, proteolytic processing of the multipeptide precursor may generate several mature AMPs leading to an amplification of the immune response. Bioinformatical analyses revealed the presence of hymenoptaecin genes with similar multipeptide precursor structure in genomes of other ant species suggesting an evolutionary conserved important role of this gene in ant immunity.}, subject = {Biologie}, language = {en} } @article{SchokraieWarnkenHotzWagenblattetal.2012, author = {Schokraie, Elham and Warnken, Uwe and Hotz-Wagenblatt, Agnes and Grohme, Markus A. and Hengherr, Steffen and F{\"o}rster, Frank and Schill, Ralph O. and Frohme, Marcus and Dandekar, Thomas and Schn{\"o}lzer, Martina}, title = {Comparative proteome analysis of Milnesium tardigradum in early embryonic state versus adults in active and anhydrobiotic state}, series = {PLoS One}, volume = {7}, journal = {PLoS One}, number = {9}, doi = {10.1371/journal.pone.0045682}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-134447}, pages = {e45682}, year = {2012}, abstract = {Tardigrades have fascinated researchers for more than 300 years because of their extraordinary capability to undergo cryptobiosis and survive extreme environmental conditions. However, the survival mechanisms of tardigrades are still poorly understood mainly due to the absence of detailed knowledge about the proteome and genome of these organisms. Our study was intended to provide a basis for the functional characterization of expressed proteins in different states of tardigrades. High-throughput, high-accuracy proteomics in combination with a newly developed tardigrade specific protein database resulted in the identification of more than 3000 proteins in three different states: early embryonic state and adult animals in active and anhydrobiotic state. This comprehensive proteome resource includes protein families such as chaperones, antioxidants, ribosomal proteins, cytoskeletal proteins, transporters, protein channels, nutrient reservoirs, and developmental proteins. A comparative analysis of protein families in the different states was performed by calculating the exponentially modified protein abundance index which classifies proteins in major and minor components. This is the first step to analyzing the proteins involved in early embryonic development, and furthermore proteins which might play an important role in the transition into the anhydrobiotic state.}, language = {en} }