@article{DavisYuKeenanetal.2013, author = {Davis, Lea K. and Yu, Dongmei and Keenan, Clare L. and Gamazon, Eric R. and Konkashbaev, Anuar I. and Derks, Eske M. and Neale, Benjamin M. and Yang, Jian and Lee, S. Hong and Evans, Patrick and Barr, Cathy L. and Bellodi, Laura and Benarroch, Fortu and Berrio, Gabriel Bedoya and Bienvenu, Oscar J. and Bloch, Michael H. and Blom, Rianne M. and Bruun, Ruth D. and Budman, Cathy L. and Camarena, Beatriz and Campbell, Desmond and Cappi, Carolina and Cardona Silgado, Julio C. and Cath, Danielle C. and Cavallini, Maria C. and Chavira, Denise A. and Chouinard, Sylvian and Conti, David V. and Cook, Edwin H. and Coric, Vladimir and Cullen, Bernadette A. and Deforce, Dieter and Delorme, Richard and Dion, Yves and Edlund, Christopher K. and Egberts, Karin and Falkai, Peter and Fernandez, Thomas V. and Gallagher, Patience J. and Garrido, Helena and Geller, Daniel and Girard, Simon L. and Grabe, Hans J. and Grados, Marco A. and Greenberg, Benjamin D. and Gross-Tsur, Varda and Haddad, Stephen and Heiman, Gary A. and Hemmings, Sian M. J. and Hounie, Ana G. and Illmann, Cornelia and Jankovic, Joseph and Jenike, Micheal A. and Kennedy, James L. and King, Robert A. and Kremeyer, Barbara and Kurlan, Roger and Lanzagorta, Nuria and Leboyer, Marion and Leckman, James F. and Lennertz, Leonhard and Liu, Chunyu and Lochner, Christine and Lowe, Thomas L. and Macciardi, Fabio and McCracken, James T. and McGrath, Lauren M. and Restrepo, Sandra C. Mesa and Moessner, Rainald and Morgan, Jubel and Muller, Heike and Murphy, Dennis L. and Naarden, Allan L. and Ochoa, William Cornejo and Ophoff, Roel A. and Osiecki, Lisa and Pakstis, Andrew J. and Pato, Michele T. and Pato, Carlos N. and Piacentini, John and Pittenger, Christopher and Pollak, Yehunda and Rauch, Scott L. and Renner, Tobias J. and Reus, Victor I. and Richter, Margaret A. and Riddle, Mark A. and Robertson, Mary M. and Romero, Roxana and Ros{\`a}rio, Maria C. and Rosenberg, David and Rouleau, Guy A. and Ruhrmann, Stephan and Ruiz-Linares, Andreas and Sampaio, Aline S. and Samuels, Jack and Sandor, Paul and Sheppard, Broke and Singer, Harvey S. and Smit, Jan H. and Stein, Dan J. and Strengman, E. and Tischfield, Jay A. and Valencia Duarte, Ana V. and Vallada, Homero and Van Nieuwerburgh, Flip and Veenstra-VanderWeele, Jeremy and Walitza, Susanne and Wang, Ying and Wendland, Jens R. and Westenberg, Herman G. M. and Shugart, Yin Yao and Miguel, Euripedes C. and McMahon, William and Wagner, Michael and Nicolini, Humberto and Posthuma, Danielle and Hanna, Gregory L. and Heutink, Peter and Denys, Damiaan and Arnold, Paul D. and Oostra, Ben A. and Nestadt, Gerald and Freimer, Nelson B. and Pauls, David L. and Wray, Naomi R. and Stewart, S. Evelyn and Mathews, Carol A. and Knowles, James A. and Cox, Nancy J. and Scharf, Jeremiah M.}, title = {Partitioning the Heritability of Tourette Syndrome and Obsessive Compulsive Disorder Reveals Differences in Genetic Architecture}, series = {PLoS Genetics}, volume = {9}, journal = {PLoS Genetics}, number = {10}, issn = {1553-7390}, doi = {10.1371/journal.pgen.1003864}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-127377}, pages = {e1003864}, year = {2013}, abstract = {The direct estimation of heritability from genome-wide common variant data as implemented in the program Genome-wide Complex Trait Analysis (GCTA) has provided a means to quantify heritability attributable to all interrogated variants. We have quantified the variance in liability to disease explained by all SNPs for two phenotypically-related neurobehavioral disorders, obsessive-compulsive disorder (OCD) and Tourette Syndrome (TS), using GCTA. Our analysis yielded a heritability point estimate of 0.58 (se = 0.09, p = 5.64e-12) for TS, and 0.37 (se = 0.07, p = 1.5e-07) for OCD. In addition, we conducted multiple genomic partitioning analyses to identify genomic elements that concentrate this heritability. We examined genomic architectures of TS and OCD by chromosome, MAF bin, and functional annotations. In addition, we assessed heritability for early onset and adult onset OCD. Among other notable results, we found that SNPs with a minor allele frequency of less than 5\% accounted for 21\% of the TS heritability and 0\% of the OCD heritability. Additionally, we identified a significant contribution to TS and OCD heritability by variants significantly associated with gene expression in two regions of the brain (parietal cortex and cerebellum) for which we had available expression quantitative trait loci (eQTLs). Finally we analyzed the genetic correlation between TS and OCD, revealing a genetic correlation of 0.41 (se = 0.15, p = 0.002). These results are very close to previous heritability estimates for TS and OCD based on twin and family studies, suggesting that very little, if any, heritability is truly missing (i.e., unassayed) from TS and OCD GWAS studies of common variation. The results also indicate that there is some genetic overlap between these two phenotypically-related neuropsychiatric disorders, but suggest that the two disorders have distinct genetic architectures.}, language = {en} } @article{ManchiaAdliAkulaetal.2013, author = {Manchia, Mirko and Adli, Mazda and Akula, Nirmala and Arda, Raffaella and Aubry, Jean-Michel and Backlund, Lena and Banzato, Claudio E. M. and Baune, Bernhard T. and Bellivier, Frank and Bengesser, Susanne and Biernacka, Joanna M. and Brichant-Petitjean, Clara and Bui, Elise and Calkin, Cynthia V. and Cheng, Andrew Tai Ann and Chillotti, Caterina and Cichon, Sven and Clark, Scott and Czerski, Piotr M. and Dantas, Clarissa and Del Zompo, Maria and DePaulo, J. Raymond and Detera-Wadleigh, Sevilla D. and Etain, Bruno and Falkai, Peter and Fris{\´e}n, Louise and Frye, Mark A. and Fullerton, Jan and Gard, S{\´e}bastien and Garnham, Julie and Goes, Fernando S. and Grof, Paul and Gruber, Oliver and Hashimoto, Ryota and Hauser, Joanna and Heilbronner, Urs and Hoban, Rebecca and Hou, Liping and Jamain, St{\´e}phane and Kahn, Jean-Pierre and Kassem, Layla and Kato, Tadafumi and Kelsoe, John R. and Kittel-Schneider, Sarah and Kliwicki, Sebastian and Kuo, Po-Hsiu and Kusumi, Ichiro and Laje, Gonzalo and Lavebratt, Catharina and Leboyer, Marion and Leckband, Susan G. and L{\´o}pez Jaramillo, Carlos A. and Maj, Mario and Malafosse, Alain and Martinsson, Lina and Masui, Takuya and Mitchell, Philip B. and Mondimore, Frank and Monteleone, Palmiero and Nallet, Audrey and Neuner, Maria and Nov{\´a}k, Tom{\´a}s and O'Donovan, Claire and {\"O}sby, Urban and Ozaki, Norio and Perlis, Roy H. and Pfennig, Andrea and Potash, James B. and Reich-Erkelenz, Daniela and Reif, Andreas and Reininghaus, Eva and Richardson, Sara and Rouleau, Guy A. and Rybakowski, Janusz K. and Schalling, Martin and Schofield, Peter R. and Schubert, Oliver K. and Schweizer, Barbara and Seem{\"u}ller, Florian and Grigoroiu-Serbanescu, Maria and Severino, Giovanni and Seymour, Lisa R. and Slaney, Claire and Smoller, Jordan W. and Squassina, Alessio and Stamm, Thomas and Steele, Jo and Stopkova, Pavla and Tighe, Sarah K. and Tortorella, Alfonso and Turecki, Gustavo and Wray, Naomi R. and Wright, Adam and Zandi, Peter P. and Zilles, David and Bauer, Michael and Rietschel, Marcella and McMahon, Francis J. and Schulze, Thomas G. and Alda, Martin}, title = {Assessment of Response to Lithium Maintenance Treatment in Bipolar Disorder: A Consortium on Lithium Genetics (ConLiGen) Report}, series = {PLoS ONE}, volume = {8}, journal = {PLoS ONE}, number = {6}, doi = {10.1371/journal.pone.0065636}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-130938}, pages = {e65636}, year = {2013}, abstract = {Objective: The assessment of response to lithium maintenance treatment in bipolar disorder (BD) is complicated by variable length of treatment, unpredictable clinical course, and often inconsistent compliance. Prospective and retrospective methods of assessment of lithium response have been proposed in the literature. In this study we report the key phenotypic measures of the "Retrospective Criteria of Long-Term Treatment Response in Research Subjects with Bipolar Disorder" scale currently used in the Consortium on Lithium Genetics (ConLiGen) study. Materials and Methods: Twenty-nine ConLiGen sites took part in a two-stage case-vignette rating procedure to examine inter-rater agreement [Kappa (\(\kappa\))] and reliability [intra-class correlation coefficient (ICC)] of lithium response. Annotated first-round vignettes and rating guidelines were circulated to expert research clinicians for training purposes between the two stages. Further, we analyzed the distributional properties of the treatment response scores available for 1,308 patients using mixture modeling. Results: Substantial and moderate agreement was shown across sites in the first and second sets of vignettes (\(\kappa\) = 0.66 and \(\kappa\) = 0.54, respectively), without significant improvement from training. However, definition of response using the A score as a quantitative trait and selecting cases with B criteria of 4 or less showed an improvement between the two stages (\(ICC_1 = 0.71\) and \(ICC_2 = 0.75\), respectively). Mixture modeling of score distribution indicated three subpopulations (full responders, partial responders, non responders). Conclusions: We identified two definitions of lithium response, one dichotomous and the other continuous, with moderate to substantial inter-rater agreement and reliability. Accurate phenotypic measurement of lithium response is crucial for the ongoing ConLiGen pharmacogenomic study.}, language = {en} }