@phdthesis{Fiedler2018, author = {Fiedler, Sebastian}, title = {Strukturelle und elektronische Zusammenh{\"a}nge von inversionsasymmetrischen Halbleitern mit starker Spin-Bahn-Kopplung; BiTeX (X =I, Br, Cl)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-155624}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Diese Arbeit befasst sich mit der Untersuchung und Manipulation von Halbleitern, bei denen die Spin-Bahn-Kopplung (SBK) in Kombination mit einem Bruch der strukturellen Inversionssymmetrie zu einer impulsabh{\"a}ngigen Spinaufspaltung der Bandstruktur f{\"u}hrt. Von besonderem Interesse ist hierbei der Zusammenhang zwischen der spinabh{\"a}ngigen elektronischen Struktur und der strukturellen Geometrie. Dieser wird durch eine Kombination komplement{\"a}rer, oberfl{\"a}chensensitiver Messmethoden - insbesondere Rastertunnelmikroskopie (STM) und Photoelektronenspektroskopie (PES) - an geeigneten Modellsystemen untersucht. Der experimentelle Fokus liegt dabei auf den polaren Halbleitern BiTeX (X =I, Br, Cl). Zus{\"a}tzliche Experimente werden an d{\"u}nnen Schichten der topologischen Isolatoren (TI) Bi1,1-xSb0;9+xSe3 (x = 0. . . 1,1) und Bi2Te2Se durchgef{\"u}hrt. Die inversionsasymmetrische Kristallstruktur in BiTeX f{\"u}hrt zur Existenz zweier nicht-{\"a}quivalenter Oberfl{\"a}chen mit unterschiedlicher Terminierung (Te oder X) und invertierter atomarer Stapelfolge. STM-Aufnahmen der Oberfl{\"a}chen gespaltener Einkristalle belegen f{\"u}r BiTeI(0001) eine Koexistenz beider Terminierungen auf einer L{\"a}ngenskala von etwa 100 nm, die sich auf Stapelfehler im Kristallvolumen zur{\"u}ckf{\"u}hren lassen. Diese Dom{\"a}nen sind groß genug, um eine vollst{\"a}ndig entwickelte Banddispersion auszubilden und erzeugen daher eine Kombination der Bandstrukturen beider Terminierungen bei r{\"a}umlich integrierenden Messmethoden. BiTeBr(0001) und BiTeCl(0001) hingegen zeichnen sich durch homogene Terminierungen auf einer makroskopischen L{\"a}ngenskala aus. Atomar aufgel{\"o}ste STM-Messungen zeigen f{\"u}r die drei Systeme unterschiedliche Defektdichten der einzelnen Lagen sowie verschiedene strukturelle Beeinflussungen durch die Halogene. PES-Messungen belegen einen starken Einfluss der Terminierung auf verschiedene Eigenschaften der Oberfl{\"a}chen, insbesondere auf die elektronische Bandstruktur, die Austrittsarbeit sowie auf die Wechselwirkung mit Adsorbaten. Die unterschiedliche Elektronegativit{\"a}t der Halogene resultiert in verschieden starken Ladungs{\"u}berg{\"a}ngen innerhalb der kovalent-ionisch gebundenen BiTe+ X- Einheitszelle. Eine erweiterte Analyse der Oberfl{\"a}cheneigenschaften ist durch die Bedampfung mit Cs m{\"o}glich, wobei eine {\"A}nderung der elektronischen Struktur durch die Wechselwirkung mit dem Alkalimetall studiert wird. Modifiziert man die Kristallstruktur sowie die chemische Zusammensetzung von BiTeI(0001) nahe der Oberfl{\"a}che durch Heizen im Vakuum, bewirkt dies eine Ver{\"a}nderung der Bandstruktur in zwei Schritten. So f{\"u}hrt zun{\"a}chst der Verlust von Iod zum Verlust der Rashba-Aufspaltung, was vermutlich durch eine Aufhebung der Inversionsasymmetrie in der Einheitszelle verursacht wird. Anschließend bildet sich eine neue Kristallstruktur, die topologisch nichttriviale Oberfl{\"a}chenzust{\"a}nde hervorbringt. Der Umordnungsprozess betrifft allerdings nur die Kristalloberfl{\"a}che - im Volumen bleibt die inversionsasymmetrische Einheitszelle erhalten. Einem derartigen Hybridsystem werden bislang unbekannte elektronische Eigenschaften vorausgesagt. Eine systematische Untersuchung von D{\"u}nnschicht-TIs, die mittels Molekularstrahlepitaxie (MBE) erzeugt wurden, zeigt eine Ver{\"a}nderung der Morphologie und elektronischen Struktur in Abh{\"a}ngigkeit von St{\"o}chiometrie und Substrat. Der Vergleich zwischen MBE und gewachsenen Einkristallen offenbart deutliche Unterschiede. Bei einem der D{\"u}nnschichtsysteme tritt sogar eine lokal inhomogene Zustandsdichte im Bindungsenergiebereich des topologischen Oberfl{\"a}chenzustands auf.}, subject = {Rashba-Effekt}, language = {de} } @article{FiedlerElKarehEremeevetal.2014, author = {Fiedler, Sebastian and El-Kareh, Lydia and Eremeev, Sergey V. and Tereshchenko, Oleg E. and Seibel, Christoph and Lutz, Peter and Kokh, Konstantin A. and Chulkov, Evgueni V. and Kuznetsova, Tatyana V. and Grebennikov, Vladimir I. and Bentmann, Hendrik and Bode, Matthias and Reinert, Friedrich}, title = {Defect and structural imperfection effects on the electronic properties of BiTeI surfaces}, series = {New Journal of Physics}, volume = {16}, journal = {New Journal of Physics}, number = {075013}, issn = {1367-2630}, doi = {10.1088/1367-2630/16/7/075013}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-119467}, year = {2014}, abstract = {The surface electronic structure of the narrow-gap seminconductor BiTeI exhibits a large Rashba-splitting which strongly depends on the surface termination. Here we report on a detailed investigation of the surface morphology and electronic properties of cleaved BiTeI single crystals by scanning tunneling microscopy, photoelectron spectroscopy (ARPES, XPS), electron diffraction (SPA-LEED) and density functional theory calculations. Our measurements confirm a previously reported coexistence of Te- and I-terminated surface areas originating from bulk stacking faults and find a characteristic length scale of ~100 nm for these areas. We show that the two terminations exhibit distinct types of atomic defects in the surface and subsurface layers. For electronic states resided on the I terminations we observe an energy shift depending on the time after cleavage. This aging effect is successfully mimicked by depositon of Cs adatoms found to accumulate on top of the I terminations. As shown theoretically on a microscopic scale, this preferential adsorbing behaviour results from considerably different energetics and surface diffusion lengths at the two terminations. Our investigations provide insight into the importance of structural imperfections as well as intrinsic and extrinsic defects on the electronic properties of BiTeI surfaces and their temporal stability.}, language = {en} }